File size: 6,501 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# coding=utf-8
# Copyright 2022 WenXiang ZhongzhiCheng LedellWu LiuGuang BoWenZhang The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for AltCLIP
"""
import warnings

from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding


class AltCLIPProcessor(ProcessorMixin):
    r"""
    Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single
    processor.

    [`AltCLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`XLMRobertaTokenizerFast`]. See
    the [`~AltCLIPProcessor.__call__`] and [`~AltCLIPProcessor.decode`] for more information.

    Args:
        image_processor ([`CLIPImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`XLMRobertaTokenizerFast`], *optional*):
            The tokenizer is a required input.
    """
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "CLIPImageProcessor"
    tokenizer_class = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")

    def __init__(self, image_processor=None, tokenizer=None, **kwargs):
        feature_extractor = None
        if "feature_extractor" in kwargs:
            warnings.warn(
                "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
                " instead.",
                FutureWarning,
            )
            feature_extractor = kwargs.pop("feature_extractor")

        image_processor = image_processor if image_processor is not None else feature_extractor
        if image_processor is None:
            raise ValueError("You need to specify an `image_processor`.")
        if tokenizer is None:
            raise ValueError("You need to specify a `tokenizer`.")

        super().__init__(image_processor, tokenizer)

    def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to XLMRobertaTokenizerFast's [`~XLMRobertaTokenizerFast.__call__`] if `text` is not
        `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:
            text (`str`, `List[str]`, `List[List[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
                number of channels, H and W are image height and width.

            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:

                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """

        if text is None and images is None:
            raise ValueError("You have to specify either text or images. Both cannot be none.")

        if text is not None:
            encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)

        if images is not None:
            image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)

        if text is not None and images is not None:
            encoding["pixel_values"] = image_features.pixel_values
            return encoding
        elif text is not None:
            return encoding
        else:
            return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
        Please refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))