Spaces:
Runtime error
Runtime error
File size: 8,783 Bytes
f8f5cdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from collections import OrderedDict
import torch
from packaging import version
from torch import Tensor, nn
from .utils import logging
logger = logging.get_logger(__name__)
class PytorchGELUTanh(nn.Module):
"""
A fast C implementation of the tanh approximation of the GeLU activation function. See
https://arxiv.org/abs/1606.08415.
This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
match due to rounding errors.
"""
def __init__(self):
super().__init__()
if version.parse(torch.__version__) < version.parse("1.12.0"):
raise ImportError(
f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
"PytorchGELUTanh. Please upgrade torch."
)
def forward(self, input: Tensor) -> Tensor:
return nn.functional.gelu(input, approximate="tanh")
class NewGELUActivation(nn.Module):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
def forward(self, input: Tensor) -> Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
class GELUActivation(nn.Module):
"""
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
def __init__(self, use_gelu_python: bool = False):
super().__init__()
if use_gelu_python:
self.act = self._gelu_python
else:
self.act = nn.functional.gelu
def _gelu_python(self, input: Tensor) -> Tensor:
return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
def forward(self, input: Tensor) -> Tensor:
return self.act(input)
class FastGELUActivation(nn.Module):
"""
Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
"""
def forward(self, input: Tensor) -> Tensor:
return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
class QuickGELUActivation(nn.Module):
"""
Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
"""
def forward(self, input: Tensor) -> Tensor:
return input * torch.sigmoid(1.702 * input)
class ClippedGELUActivation(nn.Module):
"""
Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
https://arxiv.org/abs/2004.09602.
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
initially created.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
"""
def __init__(self, min: float, max: float):
if min > max:
raise ValueError(f"min should be < max (got min: {min}, max: {max})")
super().__init__()
self.min = min
self.max = max
def forward(self, x: Tensor) -> Tensor:
return torch.clip(gelu(x), self.min, self.max)
class AccurateGELUActivation(nn.Module):
"""
Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
https://github.com/hendrycks/GELUs
Implemented along with MEGA (Moving Average Equipped Gated Attention)
"""
def __init__(self):
super().__init__()
self.precomputed_constant = math.sqrt(2 / math.pi)
def forward(self, input: Tensor) -> Tensor:
return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))
class SiLUActivation(nn.Module):
"""
See Gaussian Error Linear Units (Hendrycks et al., https://arxiv.org/abs/1606.08415) where the SiLU (Sigmoid Linear
Unit) was originally introduced and coined, and see Sigmoid-Weighted Linear Units for Neural Network Function
Approximation in Reinforcement Learning (Elfwing et al., https://arxiv.org/abs/1702.03118) and Swish: a Self-Gated
Activation Function (Ramachandran et al., https://arxiv.org/abs/1710.05941v1) where the SiLU was experimented with
later.
"""
def forward(self, input: Tensor) -> Tensor:
return nn.functional.silu(input)
class MishActivation(nn.Module):
"""
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
visit the official repository for the paper: https://github.com/digantamisra98/Mish
"""
def __init__(self):
super().__init__()
if version.parse(torch.__version__) < version.parse("1.9.0"):
self.act = self._mish_python
else:
self.act = nn.functional.mish
def _mish_python(self, input: Tensor) -> Tensor:
return input * torch.tanh(nn.functional.softplus(input))
def forward(self, input: Tensor) -> Tensor:
return self.act(input)
class LinearActivation(nn.Module):
"""
Applies the linear activation function, i.e. forwarding input directly to output.
"""
def forward(self, input: Tensor) -> Tensor:
return input
class LaplaceActivation(nn.Module):
"""
Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
https://arxiv.org/abs/2209.10655
Inspired by squared relu, but with bounded range and gradient for better stability
"""
def forward(self, input, mu=0.707107, sigma=0.282095):
input = (input - mu).div(sigma * math.sqrt(2.0))
return 0.5 * (1.0 + torch.erf(input))
class ReLUSquaredActivation(nn.Module):
"""
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
"""
def forward(self, input):
relu_applied = nn.functional.relu(input)
squared = torch.square(relu_applied)
return squared
class ClassInstantier(OrderedDict):
def __getitem__(self, key):
content = super().__getitem__(key)
cls, kwargs = content if isinstance(content, tuple) else (content, {})
return cls(**kwargs)
ACT2CLS = {
"gelu": GELUActivation,
"gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
"gelu_fast": FastGELUActivation,
"gelu_new": NewGELUActivation,
"gelu_python": (GELUActivation, {"use_gelu_python": True}),
"gelu_pytorch_tanh": PytorchGELUTanh,
"gelu_accurate": AccurateGELUActivation,
"laplace": LaplaceActivation,
"linear": LinearActivation,
"mish": MishActivation,
"quick_gelu": QuickGELUActivation,
"relu": nn.ReLU,
"relu2": ReLUSquaredActivation,
"relu6": nn.ReLU6,
"sigmoid": nn.Sigmoid,
"silu": SiLUActivation,
"swish": SiLUActivation,
"tanh": nn.Tanh,
}
ACT2FN = ClassInstantier(ACT2CLS)
def get_activation(activation_string):
if activation_string in ACT2FN:
return ACT2FN[activation_string]
else:
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
# For backwards compatibility with: from activations import gelu_python
gelu_python = get_activation("gelu_python")
gelu_new = get_activation("gelu_new")
gelu = get_activation("gelu")
gelu_fast = get_activation("gelu_fast")
quick_gelu = get_activation("quick_gelu")
silu = get_activation("silu")
mish = get_activation("mish")
linear_act = get_activation("linear")
|