File size: 32,049 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
# coding=utf-8
# Copyright 2022 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BiT model. Also supports backbone for ViT hybrid."""

import collections
import math
from typing import Optional, Tuple

import numpy as np
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from ...activations import ACT2FN
from ...modeling_outputs import (
    BackboneOutput,
    BaseModelOutputWithNoAttention,
    BaseModelOutputWithPoolingAndNoAttention,
    ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_bit import BitConfig


logger = logging.get_logger(__name__)

# General docstring
_CONFIG_FOR_DOC = "BitConfig"

# Base docstring
_CHECKPOINT_FOR_DOC = "google/bit-50"
_EXPECTED_OUTPUT_SHAPE = [1, 2048, 7, 7]

# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/bit-50"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tiger cat"

BIT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "google/bit-50",
    # See all BiT models at https://huggingface.co/models?filter=bit
]


def get_padding_value(padding=None, kernel_size=7, stride=1, dilation=1) -> Tuple[Tuple, bool]:
    r"""
    Utility function to get the tuple padding value given the kernel_size and padding.

    Args:
        padding (Union[`str`, `int`], *optional*):
            Padding value, can be either `"same"`, `"valid"`. If a different value is provided the default padding from
            PyTorch is used.
        kernel_size (`int`, *optional*, defaults to 7):
            Kernel size of the convolution layers.
        stride (`int`, *optional*, defaults to 1):
            Stride value of the convolution layers.
        dilation (`int`, *optional*, defaults to 1):
            Dilation value of the convolution layers.
    """
    dynamic = False
    if padding is None:
        padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
        return padding, dynamic

    if isinstance(padding, str):
        # for any string padding, the padding will be calculated for you, one of three ways
        padding = padding.lower()
        if padding == "same":
            # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
            if stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0:
                # static case, no extra overhead
                padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
            else:
                # dynamic 'SAME' padding, has runtime/GPU memory overhead
                padding = 0
                dynamic = True
        elif padding == "valid":
            # 'VALID' padding, same as padding=0
            padding = 0
        else:
            # Default to PyTorch style 'same'-ish symmetric padding
            padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
    return padding, dynamic


class WeightStandardizedConv2d(nn.Conv2d):
    """Conv2d with Weight Standardization. Includes TensorFlow compatible SAME padding. Used for ViT Hybrid model.

    Paper: [Micro-Batch Training with Batch-Channel Normalization and Weight
    Standardization](https://arxiv.org/abs/1903.10520v2)
    """

    def __init__(
        self,
        in_channel,
        out_channels,
        kernel_size,
        stride=1,
        padding="SAME",
        dilation=1,
        groups=1,
        bias=False,
        eps=1e-6,
    ):
        padding, is_dynamic = get_padding_value(padding, kernel_size, stride=stride, dilation=dilation)
        super().__init__(
            in_channel,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )
        if is_dynamic:
            self.pad = DynamicPad2d(kernel_size, stride, dilation)
        else:
            self.pad = None
        self.eps = eps

    def forward(self, hidden_state):
        if self.pad is not None:
            hidden_state = self.pad(hidden_state)
        weight = nn.functional.batch_norm(
            self.weight.reshape(1, self.out_channels, -1), None, None, training=True, momentum=0.0, eps=self.eps
        ).reshape_as(self.weight)
        hidden_state = nn.functional.conv2d(
            hidden_state, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
        )
        return hidden_state


class BitGroupNormActivation(nn.GroupNorm):
    r"""
    A module that combines group normalization with an activation function.
    """

    def __init__(self, config, num_channels, eps=1e-5, affine=True, apply_activation=True):
        super(BitGroupNormActivation, self).__init__(config.num_groups, num_channels, eps=eps, affine=affine)
        if apply_activation:
            self.activation = ACT2FN[config.hidden_act]
        else:
            self.activation = nn.Identity()

    def forward(self, hidden_state):
        hidden_state = nn.functional.group_norm(hidden_state, self.num_groups, self.weight, self.bias, self.eps)
        hidden_state = self.activation(hidden_state)
        return hidden_state


class DynamicPad2d(nn.Module):
    r"""
    A module that wraps dynamic padding of any input, given the parameters of the convolutional layer and the input
    hidden states.
    """

    def __init__(self, kernel_size, stride, dilation, value=0):
        super().__init__()
        # Safety checkers
        if isinstance(kernel_size, int):
            kernel_size = (kernel_size, kernel_size)

        if isinstance(stride, int):
            stride = (stride, stride)

        if isinstance(dilation, int):
            dilation = (dilation, dilation)

        self.kernel_size = kernel_size
        self.stride = stride
        self.dilation = dilation
        self.value = value

        def compute_padding(x, kernel_size, stride, dilation):
            return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0)

        self.compute_padding = compute_padding

    def __call__(self, input):
        # Get width and height
        input_height, input_width = input.size()[-2:]

        # Compute the padding values
        padding_height = self.compute_padding(input_height, self.kernel_size[0], self.stride[0], self.dilation[0])
        padding_width = self.compute_padding(input_width, self.kernel_size[1], self.stride[1], self.dilation[1])

        # apply pad
        if padding_height > 0 or padding_width > 0:
            input = nn.functional.pad(
                input,
                [
                    padding_width // 2,
                    padding_width - padding_width // 2,
                    padding_height // 2,
                    padding_height - padding_height // 2,
                ],
                value=self.value,
            )
        return input


class BitMaxPool2d(nn.MaxPool2d):
    """Tensorflow like 'SAME' wrapper for 2D max pooling"""

    def __init__(
        self,
        kernel_size: int,
        stride=None,
        dilation=1,
        ceil_mode=False,
        padding=(0, 0),
        padding_value=0,
        use_dynamic_padding=True,
    ):
        kernel_size = kernel_size if isinstance(kernel_size, collections.abc.Iterable) else (kernel_size, kernel_size)
        stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride)
        dilation = dilation if isinstance(dilation, collections.abc.Iterable) else (dilation, dilation)
        super().__init__(kernel_size, stride, padding, dilation, ceil_mode)
        if use_dynamic_padding:
            self.pad = DynamicPad2d(kernel_size, stride, dilation, padding_value)
        else:
            self.pad = nn.Identity()

    def forward(self, hidden_states):
        hidden_states = self.pad(hidden_states)
        return nn.functional.max_pool2d(
            hidden_states, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode
        )


class BitEmbeddings(nn.Module):
    """
    BiT Embeddings (stem) composed of a single aggressive convolution.
    """

    def __init__(self, config: BitConfig):
        super().__init__()

        self.convolution = WeightStandardizedConv2d(
            config.num_channels,
            config.embedding_size,
            kernel_size=7,
            stride=2,
            eps=1e-8,
            padding=config.global_padding,
        )

        self.pooler = BitMaxPool2d(kernel_size=3, stride=2, use_dynamic_padding=config.embedding_dynamic_padding)

        # Use the same padding strategy as convolutional layers
        if config.global_padding is not None and config.global_padding.upper() == "SAME":
            self.pad = nn.Identity()
        else:
            self.pad = nn.ConstantPad2d(padding=(1, 1, 1, 1), value=0.0)

        if not config.layer_type == "preactivation":
            self.norm = BitGroupNormActivation(config, num_channels=config.embedding_size)
        else:
            self.norm = nn.Identity()

        self.num_channels = config.num_channels

    def forward(self, pixel_values: Tensor) -> Tensor:
        num_channels = pixel_values.shape[1]
        if num_channels != self.num_channels:
            raise ValueError(
                "Make sure that the channel dimension of the pixel values match with the one set in the configuration."
            )

        embedding = self.convolution(pixel_values)

        embedding = self.pad(embedding)

        embedding = self.norm(embedding)

        embedding = self.pooler(embedding)

        return embedding


# Copied from transformers.models.convnext.modeling_convnext.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
    however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
    layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
    argument.
    """
    if drop_prob == 0.0 or not training:
        return input
    keep_prob = 1 - drop_prob
    shape = (input.shape[0],) + (1,) * (input.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
    random_tensor.floor_()  # binarize
    output = input.div(keep_prob) * random_tensor
    return output


# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Bit
class BitDropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob: Optional[float] = None) -> None:
        super().__init__()
        self.drop_prob = drop_prob

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return drop_path(hidden_states, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


def make_div(value, divisor=8):
    min_value = divisor
    new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
    if new_value < 0.9 * value:
        new_value += divisor
    return new_value


class BitPreActivationBottleneckLayer(nn.Module):
    """Pre-activation (v2) bottleneck block.
    Follows the implementation of "Identity Mappings in Deep Residual Networks":
    https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua

    Except it puts the stride on 3x3 conv when available.
    """

    def __init__(
        self,
        config,
        in_channels,
        out_channels=None,
        bottle_ratio=0.25,
        stride=1,
        dilation=1,
        first_dilation=None,
        groups=1,
        drop_path_rate=0.0,
        is_first_layer=False,
    ):
        super().__init__()

        first_dilation = first_dilation or dilation

        out_channels = out_channels or in_channels
        mid_channels = make_div(out_channels * bottle_ratio)

        if is_first_layer:
            self.downsample = BitDownsampleConv(
                config,
                in_channels,
                out_channels,
                stride=stride,
                preact=True,
            )
        else:
            self.downsample = None

        self.norm1 = BitGroupNormActivation(config, in_channels)
        self.conv1 = WeightStandardizedConv2d(in_channels, mid_channels, 1, eps=1e-8, padding=config.global_padding)

        self.norm2 = BitGroupNormActivation(config, num_channels=mid_channels)
        self.conv2 = WeightStandardizedConv2d(
            mid_channels, mid_channels, 3, stride=stride, groups=groups, eps=1e-8, padding=config.global_padding
        )

        self.norm3 = BitGroupNormActivation(config, mid_channels)
        self.conv3 = WeightStandardizedConv2d(mid_channels, out_channels, 1, eps=1e-8, padding=config.global_padding)

        self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()

    def forward(self, hidden_states):
        hidden_states_preact = self.norm1(hidden_states)

        # shortcut branch
        shortcut = hidden_states
        if self.downsample is not None:
            shortcut = self.downsample(hidden_states_preact)

        # residual branch
        hidden_states = self.conv1(hidden_states_preact)
        hidden_states = self.conv2(self.norm2(hidden_states))
        hidden_states = self.conv3(self.norm3(hidden_states))
        hidden_states = self.drop_path(hidden_states)
        return hidden_states + shortcut


class BitBottleneckLayer(nn.Module):
    """Non Pre-activation bottleneck block, equivalent to V1.5/V1b bottleneck. Used for ViT Hybrid."""

    def __init__(
        self,
        config,
        in_channels,
        out_channels=None,
        bottle_ratio=0.25,
        stride=1,
        dilation=1,
        first_dilation=None,
        groups=1,
        drop_path_rate=0.0,
        is_first_layer=False,
    ):
        super().__init__()
        first_dilation = first_dilation or dilation

        out_channels = out_channels or in_channels
        mid_chs = make_div(out_channels * bottle_ratio)

        if is_first_layer:
            self.downsample = BitDownsampleConv(
                config,
                in_channels,
                out_channels,
                stride=stride,
                preact=False,
            )
        else:
            self.downsample = None

        self.conv1 = WeightStandardizedConv2d(in_channels, mid_chs, 1, eps=1e-8, padding=config.global_padding)
        self.norm1 = BitGroupNormActivation(config, num_channels=mid_chs)
        self.conv2 = WeightStandardizedConv2d(
            mid_chs,
            mid_chs,
            3,
            stride=stride,
            dilation=first_dilation,
            groups=groups,
            eps=1e-8,
            padding=config.global_padding,
        )
        self.norm2 = BitGroupNormActivation(config, num_channels=mid_chs)
        self.conv3 = WeightStandardizedConv2d(mid_chs, out_channels, 1, eps=1e-8, padding=config.global_padding)
        self.norm3 = BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
        self.drop_path = BitDropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()

        self.activation = ACT2FN[config.hidden_act]

    def forward(self, hidden_states):
        # shortcut branch
        shortcut = hidden_states
        if self.downsample is not None:
            shortcut = self.downsample(hidden_states)

        # residual
        hidden_states = self.conv1(hidden_states)
        hidden_states = self.norm1(hidden_states)

        hidden_states = self.conv2(hidden_states)
        hidden_states = self.norm2(hidden_states)

        hidden_states = self.conv3(hidden_states)
        hidden_states = self.norm3(hidden_states)

        hidden_states = self.drop_path(hidden_states)
        hidden_states = self.activation(hidden_states + shortcut)
        return hidden_states


class BitDownsampleConv(nn.Module):
    def __init__(
        self,
        config,
        in_channels,
        out_channels,
        stride=1,
        preact=True,
    ):
        super().__init__()
        self.conv = WeightStandardizedConv2d(
            in_channels, out_channels, 1, stride=stride, eps=1e-8, padding=config.global_padding
        )
        self.norm = (
            nn.Identity()
            if preact
            else BitGroupNormActivation(config, num_channels=out_channels, apply_activation=False)
        )

    def forward(self, x):
        return self.norm(self.conv(x))


class BitStage(nn.Module):
    """
    A ResNet v2 stage composed by stacked layers.
    """

    def __init__(
        self,
        config,
        in_channels,
        out_channels,
        stride,
        dilation,
        depth,
        bottle_ratio=0.25,
        layer_dropout=None,
    ):
        super().__init__()

        first_dilation = 1 if dilation in (1, 2) else 2

        # Get the layer type
        if config.layer_type == "bottleneck":
            layer_cls = BitBottleneckLayer
        else:
            layer_cls = BitPreActivationBottleneckLayer

        prev_chs = in_channels
        self.layers = nn.Sequential()
        for layer_idx in range(depth):
            # Get the current hyper-parameters
            stride, drop_path_rate, is_first_layer = self._get_updated_hyperparameters(
                layer_idx, stride, layer_dropout
            )

            self.layers.add_module(
                str(layer_idx),
                layer_cls(
                    config,
                    prev_chs,
                    out_channels,
                    stride=stride,
                    dilation=dilation,
                    bottle_ratio=bottle_ratio,
                    first_dilation=first_dilation,
                    drop_path_rate=drop_path_rate,
                    is_first_layer=is_first_layer,
                ),
            )
            prev_chs = out_channels
            first_dilation = dilation

    def _get_updated_hyperparameters(self, layer_idx, stride, layer_dropout):
        r"""
        Get the new hyper-parameters with respect to the previous ones and the index of the current layer.
        """
        if layer_dropout:
            drop_path_rate = layer_dropout[layer_idx]
        else:
            drop_path_rate = 0.0

        if layer_idx != 0:
            stride = 1

        is_first_layer = layer_idx == 0

        return stride, drop_path_rate, is_first_layer

    def forward(self, input: Tensor) -> Tensor:
        hidden_state = input
        for _, layer in enumerate(self.layers):
            hidden_state = layer(hidden_state)
        return hidden_state


class BitEncoder(nn.Module):
    def __init__(self, config: BitConfig):
        super().__init__()
        self.stages = nn.ModuleList([])

        prev_chs = config.embedding_size

        # These needs to stay hardcoded
        current_stride = 4
        dilation = 1

        layer_dropouts = [
            x.tolist()
            for x in torch.Tensor(np.linspace(0, config.drop_path_rate, sum(config.depths))).split(config.depths)
        ]

        for stage_idx, (current_depth, current_hidden_size, layer_dropout) in enumerate(
            zip(config.depths, config.hidden_sizes, layer_dropouts)
        ):
            # Get the updated hyper params
            out_channels, stride, dilation = self._get_updated_hyperparameters(
                stage_idx, current_stride, current_hidden_size, dilation, config
            )

            stage = BitStage(
                config,
                prev_chs,
                out_channels,
                stride=stride,
                dilation=dilation,
                depth=current_depth,
                layer_dropout=layer_dropout,
            )

            prev_chs = out_channels
            current_stride *= stride

            self.stages.add_module(str(stage_idx), stage)

    def _get_updated_hyperparameters(self, stage_idx, current_stride, current_hidden_size, dilation, config):
        out_channels = make_div(current_hidden_size * config.width_factor)
        stride = 1 if stage_idx == 0 else 2
        if current_stride >= config.output_stride:
            dilation *= stride
            stride = 1
        return out_channels, stride, dilation

    def forward(
        self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True
    ) -> BaseModelOutputWithNoAttention:
        hidden_states = () if output_hidden_states else None

        for stage_module in self.stages:
            if output_hidden_states:
                hidden_states = hidden_states + (hidden_state,)

            hidden_state = stage_module(hidden_state)

        if output_hidden_states:
            hidden_states = hidden_states + (hidden_state,)

        if not return_dict:
            return tuple(v for v in [hidden_state, hidden_states] if v is not None)

        return BaseModelOutputWithNoAttention(
            last_hidden_state=hidden_state,
            hidden_states=hidden_states,
        )


class BitPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = BitConfig
    base_model_prefix = "bit"
    main_input_name = "pixel_values"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        if isinstance(module, nn.Conv2d):
            nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
        elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
            nn.init.constant_(module.weight, 1)
            nn.init.constant_(module.bias, 0)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, BitModel):
            module.gradient_checkpointing = value


BIT_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`BitConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

BIT_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BitImageProcessor.__call__`]
            for details.

        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare BiT model outputting raw features without any specific head on top.",
    BIT_START_DOCSTRING,
)
class BitModel(BitPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.embedder = BitEmbeddings(config)

        self.encoder = BitEncoder(config)
        self.norm = (
            BitGroupNormActivation(config, num_channels=config.hidden_sizes[-1])
            if config.layer_type == "preactivation"
            else nn.Identity()
        )

        self.pooler = nn.AdaptiveAvgPool2d((1, 1))
        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPoolingAndNoAttention,
        config_class=_CONFIG_FOR_DOC,
        modality="vision",
        expected_output=_EXPECTED_OUTPUT_SHAPE,
    )
    def forward(
        self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
    ) -> BaseModelOutputWithPoolingAndNoAttention:
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        embedding_output = self.embedder(pixel_values)

        encoder_outputs = self.encoder(
            embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict
        )

        last_hidden_state = encoder_outputs[0]

        last_hidden_state = self.norm(last_hidden_state)

        pooled_output = self.pooler(last_hidden_state)

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndNoAttention(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
        )


@add_start_docstrings(
    """
    BiT Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
    ImageNet.
    """,
    BIT_START_DOCSTRING,
)
class BitForImageClassification(BitPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.bit = BitModel(config)
        # classification head
        self.classifier = nn.Sequential(
            nn.Flatten(),
            nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(),
        )
        # initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_IMAGE_CLASS_CHECKPOINT,
        output_type=ImageClassifierOutputWithNoAttention,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
    )
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> ImageClassifierOutputWithNoAttention:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)

        pooled_output = outputs.pooler_output if return_dict else outputs[1]

        logits = self.classifier(pooled_output)

        loss = None

        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"
            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)

        if not return_dict:
            output = (logits,) + outputs[2:]
            return (loss,) + output if loss is not None else output

        return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)


@add_start_docstrings(
    """
    BiT backbone, to be used with frameworks like DETR and MaskFormer.
    """,
    BIT_START_DOCSTRING,
)
class BitBackbone(BitPreTrainedModel, BackboneMixin):
    def __init__(self, config):
        super().__init__(config)
        super()._init_backbone(config)

        self.bit = BitModel(config)
        self.num_features = [config.embedding_size] + config.hidden_sizes

        # initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(BIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None
    ) -> BackboneOutput:
        """
        Returns:

        Examples:

        ```python
        >>> from transformers import AutoImageProcessor, AutoBackbone
        >>> import torch
        >>> from PIL import Image
        >>> import requests

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> processor = AutoImageProcessor.from_pretrained("google/resnetnv2-50")
        >>> model = AutoBackbone.from_pretrained("google/resnetnv2-50")

        >>> inputs = processor(image, return_tensors="pt")
        >>> outputs = model(**inputs)
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        outputs = self.bit(pixel_values, output_hidden_states=True, return_dict=True)

        hidden_states = outputs.hidden_states

        feature_maps = ()
        for idx, stage in enumerate(self.stage_names):
            if stage in self.out_features:
                feature_maps += (hidden_states[idx],)

        if not return_dict:
            output = (feature_maps,)
            if output_hidden_states:
                output += (outputs.hidden_states,)
            return output

        return BackboneOutput(
            feature_maps=feature_maps,
            hidden_states=outputs.hidden_states if output_hidden_states else None,
            attentions=None,
        )