File size: 73,331 Bytes
f8f5cdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BARK model."""
import math
from typing import Dict, Optional, Tuple, Union

import numpy as np
import torch
from torch import nn
from torch.nn import functional as F

from ...generation.logits_process import AlternatingCodebooksLogitsProcessor, SuppressTokensLogitsProcessor
from ...modeling_outputs import CausalLMOutputWithPast, MaskedLMOutput
from ...modeling_utils import PreTrainedModel, get_parameter_device
from ...utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_accelerate_available,
    logging,
)
from ..auto import AutoModel
from .configuration_bark import (
    BarkCoarseConfig,
    BarkConfig,
    BarkFineConfig,
    BarkSemanticConfig,
    BarkSubModelConfig,
)
from .generation_configuration_bark import (
    BarkCoarseGenerationConfig,
    BarkFineGenerationConfig,
    BarkSemanticGenerationConfig,
)


logger = logging.get_logger(__name__)


_CHECKPOINT_FOR_DOC = "suno/bark-small"
_CONFIG_FOR_DOC = "BarkConfig"

BARK_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "suno/bark-small",
    "suno/bark",
    # See all Bark models at https://huggingface.co/models?filter=bark
]


class BarkSelfAttention(nn.Module):
    # adapted from GPTNeoSelfAttention and Bark code
    # BarkSelfAttention can have two attention type, i.e full attention or causal attention

    def __init__(self, config, is_causal=False):
        super().__init__()

        # regularization
        self.dropout = config.dropout
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)

        self.embed_dim = config.hidden_size
        self.num_heads = config.num_heads
        self.head_dim = self.embed_dim // self.num_heads

        if config.hidden_size % config.num_heads != 0:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )

        # key, query, value projections for all heads, but in a batch
        self.att_proj = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.bias)
        # output projection
        self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=config.bias)

        self.is_causal = is_causal
        if is_causal:
            block_size = config.block_size
            bias = torch.tril(torch.ones((block_size, block_size), dtype=bool)).view(1, 1, block_size, block_size)
            self.register_buffer("bias", bias)

    # Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads
    def _split_heads(self, tensor, num_heads, attn_head_size):
        """
        Splits hidden_size dim into attn_head_size and num_heads
        """
        new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
        tensor = tensor.view(new_shape)
        return tensor.permute(0, 2, 1, 3)  # (batch, head, seq_length, head_features)

    def _merge_heads(self, tensor, num_heads, attn_head_size):
        """
        Merges attn_head_size dim and num_attn_heads dim into hidden_size
        """

        # re-assemble all head outputs side by side
        # (batch, num_heads, seq_len, attn_head_size) -> (batch, seq_len, num_heads*attn_head_size)
        tensor = tensor.transpose(1, 2).contiguous()
        tensor = tensor.view(tensor.size()[:-2] + (num_heads * attn_head_size,))

        return tensor

    def _attn(self, query, key, value, attention_mask=None, head_mask=None):
        # unlike GPTNeo's SelfAttention, divide by the square root of the dimension of the query and the key
        attn_weights = torch.matmul(query, key.transpose(-1, -2)) * (1.0 / math.sqrt(self.head_dim))

        if self.is_causal:
            query_length, key_length = query.size(-2), key.size(-2)

            # fill the upper left part of the attention weights with inf
            attn_weights = attn_weights.masked_fill(
                self.bias[:, :, key_length - query_length : key_length, :key_length] == 0,
                torch.finfo(attn_weights.dtype).min,
            )

        if attention_mask is not None:
            # Apply the attention mask
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)
        attn_weights = attn_weights.to(value.dtype)
        attn_weights = self.attn_dropout(attn_weights)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        # (batch, num_heads, seq_len, seq_len) x (batch, num_heads, seq_len, attn_head_size)
        # -> (batch, num_heads, seq_len, attn_head_size)
        attn_output = torch.matmul(attn_weights, value)

        return attn_output, attn_weights

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        past_key_values=None,
        head_mask=None,
        use_cache=False,
        output_attentions=False,
    ):
        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        query, key, value = self.att_proj(hidden_states).split(self.embed_dim, dim=2)

        query = self._split_heads(query, self.num_heads, self.head_dim)
        key = self._split_heads(key, self.num_heads, self.head_dim)
        value = self._split_heads(value, self.num_heads, self.head_dim)

        if past_key_values is not None:
            past_key = past_key_values[0]
            past_value = past_key_values[1]
            key = torch.cat((past_key, key), dim=-2)
            value = torch.cat((past_value, value), dim=-2)

        if use_cache is True:
            present = (key, value)
        else:
            present = None

        attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
        attn_output = self.out_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class BarkLayerNorm(nn.Module):
    """LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False."""

    def __init__(self, hidden_size, bias=True):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None

    def forward(self, input):
        return F.layer_norm(input, self.weight.shape, self.weight, self.bias, eps=1e-5)


class BarkMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.in_proj = nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=config.bias)
        self.out_proj = nn.Linear(4 * config.hidden_size, config.hidden_size, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)
        self.gelu = nn.GELU()

    def forward(self, hidden_states):
        hidden_states = self.in_proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        hidden_states = self.out_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class BarkBlock(nn.Module):
    def __init__(self, config, is_causal=False):
        super().__init__()

        if is_causal:
            # if causal, uses handmade LayerNorm, so that the layerNorm bias is optional
            # this handmade layerNorm is used to stick with Bark choice of leaving optional bias in
            # AutoRegressive models (corresponding to the "Text" and the "Coarse" modules)
            self.layernorm_1 = BarkLayerNorm(config.hidden_size, bias=config.bias)
            self.layernorm_2 = BarkLayerNorm(config.hidden_size, bias=config.bias)
        else:
            self.layernorm_1 = nn.LayerNorm(config.hidden_size)
            self.layernorm_2 = nn.LayerNorm(config.hidden_size)

        self.attn = BarkSelfAttention(config, is_causal=is_causal)

        self.mlp = BarkMLP(config)

    def forward(
        self,
        hidden_states,
        past_key_values=None,
        attention_mask=None,
        head_mask=None,
        use_cache=False,
        output_attentions=False,
    ):
        intermediary_hidden_states = self.layernorm_1(hidden_states)

        attn_outputs = self.attn(
            intermediary_hidden_states,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )

        attn_output = attn_outputs[0]  # output_attn: output, present_key_values, (attn_weights)
        outputs = attn_outputs[1:]

        intermediary_hidden_states = hidden_states + attn_output
        intermediary_hidden_states = intermediary_hidden_states + self.mlp(
            self.layernorm_2(intermediary_hidden_states)
        )

        if use_cache:
            outputs = (intermediary_hidden_states,) + outputs
        else:
            outputs = (intermediary_hidden_states,) + outputs[1:]

        return outputs  # hidden_states, ((present), attentions)


class BarkPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = BarkConfig
    supports_gradient_checkpointing = False

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear,)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    @property
    def device(self) -> torch.device:
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """

        # if has _hf_hook, has been offloaded so the device has to be found in the hook
        if not hasattr(self, "_hf_hook"):
            return get_parameter_device(self)
        for module in self.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)

        return get_parameter_device(self)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, BarkCausalModel) or isinstance(module, BarkFineModel) or isinstance(module, BarkModel):
            module.gradient_checkpointing = value


BARK_MODEL_START_DOCSTRING = """
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`{config}`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


BARK_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`BarkConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


BARK_FINE_INPUTS_DOCSTRING = r"""
    Args:
        codebook_idx (`int`):
            Index of the codebook that will be predicted.
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length, number_of_codebooks)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it. Initially, indices of the first two codebooks are obtained from the `coarse` sub-model. The rest is
            predicted recursively by attending the previously predicted channels. The model predicts on windows of
            length 1024.
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): NOT IMPLEMENTED YET.
        input_embeds (`torch.FloatTensor` of shape `(batch_size, input_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. If
            `past_key_values` is used, optionally only the last `input_embeds` have to be input (see
            `past_key_values`). This is useful if you want more control over how to convert `input_ids` indices into
            associated vectors than the model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

BARK_CAUSAL_MODEL_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `input_ids` of shape `(batch_size, sequence_length)`.
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        input_embeds (`torch.FloatTensor` of shape `(batch_size, input_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
            Here, due to `Bark` particularities, if `past_key_values` is used, `input_embeds` will be ignored and you
            have to use `input_ids`. If `past_key_values` is not used and `use_cache` is set to `True`, `input_embeds`
            is used in priority instead of `input_ids`.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


# GPT2-like autoregressive model
class BarkCausalModel(BarkPreTrainedModel):
    config_class = BarkSubModelConfig

    def __init__(self, config):
        super().__init__(config)
        self.config = config

        # initialize as an autoregressive GPT-like model
        self.input_embeds_layer = nn.Embedding(config.input_vocab_size, config.hidden_size)
        self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size)

        self.drop = nn.Dropout(config.dropout)

        self.layers = nn.ModuleList([BarkBlock(config, is_causal=True) for _ in range(config.num_layers)])

        self.layernorm_final = BarkLayerNorm(config.hidden_size, bias=config.bias)

        self.lm_head = nn.Linear(config.hidden_size, config.output_vocab_size, bias=False)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.input_embeds_layer

    def set_input_embeddings(self, new_embeddings):
        self.input_embeds_layer = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
        input_embeds = kwargs.get("input_embeds", None)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if past_key_values is not None:
            # only last token for inputs_ids if past is defined in kwargs
            seq_len = input_ids.shape[1]
            input_ids = input_ids[:, [-1]]

            # input_embeds have already been used and is not required anymore
            input_embeds = None
        else:
            if input_embeds is not None and kwargs.get("use_cache"):
                seq_len = input_embeds.shape[1]
            else:
                seq_len = input_ids.shape[1]

        # ensure that attention_mask and position_ids shapes are aligned with the weird Bark hack of reducing
        # sequence length on the first forward pass
        if attention_mask is not None:
            attention_mask = attention_mask[:, :seq_len]
        if position_ids is not None:
            position_ids = position_ids[:, :seq_len]

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        if input_embeds is not None and kwargs.get("use_cache"):
            return {
                "input_ids": None,
                "input_embeds": input_embeds,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "attention_mask": attention_mask,
            }
        return {
            "input_ids": input_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
        }

    @add_start_docstrings_to_model_forward(BARK_CAUSAL_MODEL_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        input_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Verify if input_embeds already exists
        # then compute embeddings.
        if input_ids is not None and input_embeds is not None:
            raise ValueError("You cannot specify both input_ids and input_embeds at the same time")
        elif input_embeds is not None and past_key_values is None:
            # we want to return the input_embeds in priority so that it is in line with a weird hack
            # of Bark which concatenate two bits of the input_embeds on the first forward pass of the semantic model
            pass
        elif input_ids is not None:
            input_embeds = self.input_embeds_layer(input_ids)  # token embeddings of shape (b, t, n_embd)
        elif input_embeds is not None:
            pass
        else:
            raise ValueError("You have to specify either input_ids or input_embeds")

        input_shape = input_embeds.size()[:-1]
        batch_size = input_embeds.shape[0]
        seq_length = input_shape[-1]

        device = input_ids.device if input_ids is not None else input_embeds.device

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.layers))
        else:
            past_length = past_key_values[0][0].size(-2)

        if position_ids is None:
            position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0)  # shape (1, seq_length)

        position_embeds = self.position_embeds_layer(position_ids)  # position embeddings of shape (1, t, n_embd)

        # Attention mask.
        if attention_mask is not None:
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
            attention_mask = attention_mask.view(batch_size, -1)
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, None, None, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and the dtype's smallest value for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_heads x N x N
        # head_mask has shape num_layers x batch x num_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)

        hidden_states = self.drop(input_embeds + position_embeds)
        output_shape = input_shape + (hidden_states.size(-1),)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        present_key_values = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        for i, (block, past_layer_key_values) in enumerate(zip(self.layers, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, use_cache, output_attentions)

                    return custom_forward

                outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                )
            else:
                outputs = block(
                    hidden_states,
                    past_key_values=past_layer_key_values,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]

            if use_cache:
                present_key_values = present_key_values + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)

        hidden_states = self.layernorm_final(hidden_states)

        hidden_states = hidden_states.view(output_shape)

        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            raise NotImplementedError(
                "Training is not implemented yet for Bark - ensure you do not pass `labels` to the model."
            )

        if not return_dict:
            return tuple(
                v for v in [None, logits, present_key_values, all_hidden_states, all_self_attentions] if v is not None
            )

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=present_key_values,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

    @staticmethod
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        # Necessary for beam_search
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past_key_values
        )


@add_start_docstrings(
    """Bark semantic (or text) model. It shares the same architecture as the coarse model.
    It is a GPT-2 like autoregressive model with a language modeling head on top.""",
    BARK_MODEL_START_DOCSTRING.format(config="BarkSemanticConfig"),
)
class BarkSemanticModel(BarkCausalModel):
    base_model_prefix = "semantic"
    config_class = BarkSemanticConfig

    def generate(
        self,
        input_ids: torch.Tensor,
        semantic_generation_config: BarkSemanticGenerationConfig = None,
        history_prompt: Optional[Dict[str, torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> torch.LongTensor:
        """
        Generates text semantic tokens from an input prompt and an additional optional `Bark` speaker prompt.

        Args:
            input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
                Input ids, i.e tokenized input sentences. Will be truncated up to
                semantic_generation_config.max_input_semantic_length tokens. Note that the output audios will be as
                long as the longest generation among the batch.
            semantic_generation_config (`BarkSemanticGenerationConfig`):
                Generation config indicating how to generate the semantic tokens.
            history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
                Optional `Bark` speaker prompt.
            attention_mask (`Optional[torch.Tensor]`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
        Returns:
            torch.LongTensor: Output semantic tokens.
        """
        if semantic_generation_config is None:
            raise ValueError("`semantic_generation_config` has to be provided")

        batch_size = input_ids.shape[0]

        max_input_semantic_length = semantic_generation_config.max_input_semantic_length

        input_ids = input_ids + semantic_generation_config.text_encoding_offset

        if attention_mask is not None:
            input_ids = input_ids.masked_fill((1 - attention_mask).bool(), semantic_generation_config.text_pad_token)

        if history_prompt is not None:
            semantic_history = history_prompt["semantic_prompt"][-max_input_semantic_length:]
            semantic_history = nn.functional.pad(
                semantic_history,
                (0, max_input_semantic_length - len(semantic_history)),
                value=semantic_generation_config.semantic_pad_token,
                mode="constant",
            )
        else:
            semantic_history = torch.tensor(
                [semantic_generation_config.semantic_pad_token] * max_input_semantic_length, dtype=torch.int
            ).to(self.device)

        semantic_history = torch.repeat_interleave(semantic_history[None], batch_size, dim=0)

        infer_array = torch.tensor(
            [[semantic_generation_config.semantic_infer_token]] * batch_size, dtype=torch.int
        ).to(self.device)

        input_embeds = torch.cat(
            [
                self.input_embeds_layer(input_ids[:, :max_input_semantic_length])
                + self.input_embeds_layer(semantic_history[:, : max_input_semantic_length + 1]),
                self.input_embeds_layer(infer_array),
            ],
            dim=1,
        )

        tokens_to_suppress = list(
            range(semantic_generation_config.semantic_vocab_size, semantic_generation_config.semantic_pad_token)
        )
        tokens_to_suppress.extend(
            list(range(semantic_generation_config.semantic_pad_token + 1, self.config.output_vocab_size))
        )

        suppress_tokens_logits_processor = SuppressTokensLogitsProcessor(tokens_to_suppress)

        # pass input_ids in order to stay consistent with the transformers generate method even though it is not used
        # (except to get the input seq_len - that's why we keep the first 257 tokens)
        semantic_output = super().generate(
            torch.ones((batch_size, max_input_semantic_length + 1), dtype=torch.int).to(self.device),
            input_embeds=input_embeds,
            logits_processor=[suppress_tokens_logits_processor],
            generation_config=semantic_generation_config,
            **kwargs,
        )  # size: 10048

        # take the generated semantic tokens
        semantic_output = semantic_output[:, max_input_semantic_length + 1 :]

        return semantic_output


@add_start_docstrings(
    """Bark coarse acoustics model.
    It shares the same architecture as the semantic (or text) model. It is a GPT-2 like autoregressive model with a
    language modeling head on top.""",
    BARK_MODEL_START_DOCSTRING.format(config="BarkCoarseConfig"),
)
class BarkCoarseModel(BarkCausalModel):
    base_model_prefix = "coarse_acoustics"
    config_class = BarkCoarseConfig

    def preprocess_histories(
        self,
        max_coarse_history: int,
        semantic_to_coarse_ratio: int,
        batch_size: int,
        semantic_generation_config: int,
        codebook_size: int,
        history_prompt: Optional[Dict[str, torch.Tensor]] = None,
    ):
        """
        Preprocess the optional `Bark` speaker prompts before `self.generate`.

        Args:
            max_coarse_history (`int`):
                Maximum size of coarse tokens used.
            semantic_to_coarse_ratio (`int`):
                Ratio of semantic to coarse frequency
            batch_size (`int`):
                Batch size, i.e the number of samples.
            semantic_generation_config (`BarkSemanticGenerationConfig`):
                Generation config indicating how to generate the semantic tokens.
            codebook_size (`int`):
                Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
            history_prompt (`Optional[Dict[str,torch.Tensor]]`):
                Optional `Bark` speaker prompt.
        Returns: Returns:
            `tuple(torch.FloatTensor)`:
            - **x_semantic_history** (`torch.FloatTensor` -- Processed semantic speaker prompt.
            - **x_coarse_history** (`torch.FloatTensor`) -- Processed coarse speaker prompt.
        """
        if history_prompt is not None:
            x_semantic_history = torch.repeat_interleave(history_prompt["semantic_prompt"][None], batch_size, dim=0)
            # clone to avoid modifying history_prompt.coarse_prompt
            x_coarse_history = history_prompt["coarse_prompt"].clone()

            # offset x_coarse_history
            if codebook_size is not None:
                for n in range(1, x_coarse_history.shape[0]):
                    # offset
                    x_coarse_history[n, :] += codebook_size * n

            # flatten x_coarse_history
            x_coarse_history = torch.transpose(x_coarse_history, 0, 1).view(-1)

            x_coarse_history = x_coarse_history + semantic_generation_config.semantic_vocab_size

            x_coarse_history = torch.repeat_interleave(x_coarse_history[None], batch_size, dim=0)
            # e.g: after SEMANTIC_VOCAB_SIZE (10000), 1024 tokens dedicated to first codebook, 1024 next tokens
            # dedicated to second codebook.

            max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
            # trim histories correctly
            n_semantic_hist_provided = min(
                [
                    max_semantic_history,
                    x_semantic_history.shape[1] - x_semantic_history.shape[1] % 2,
                    int(np.floor(x_coarse_history.shape[1] / semantic_to_coarse_ratio)),
                ]
            )

            n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))

            x_semantic_history = x_semantic_history[:, -n_semantic_hist_provided:].int()
            x_coarse_history = x_coarse_history[:, -n_coarse_hist_provided:].int()
            # bit of a hack for time alignment (sounds better) - from Bark original implementation
            x_coarse_history = x_coarse_history[:, :-2]

        else:
            # shape: (batch_size, 0)
            x_semantic_history = torch.tensor([[]] * batch_size, dtype=torch.int).to(self.device)
            x_coarse_history = torch.tensor([[]] * batch_size, dtype=torch.int).to(self.device)

        return x_semantic_history, x_coarse_history

    def generate(
        self,
        semantic_output: torch.Tensor,
        semantic_generation_config: BarkSemanticGenerationConfig = None,
        coarse_generation_config: BarkCoarseGenerationConfig = None,
        codebook_size: int = 1024,
        history_prompt: Optional[Dict[str, torch.Tensor]] = None,
        **kwargs,
    ) -> torch.LongTensor:
        """
        Generates coarse acoustics tokens from input text semantic tokens and an additional optional `Bark` speaker
        prompt.

        Args:
            semantic_output (`torch.Tensor` of shape (batch_size, seq_len), *optional*):
                Input text semantic ids, i.e the output of `BarkSemanticModel.generate`.
            semantic_generation_config (`BarkSemanticGenerationConfig`):
                Generation config indicating how to generate the semantic tokens.
            coarse_generation_config (`BarkCoarseGenerationConfig`):
                Generation config indicating how to generate the coarse tokens.
            codebook_size (`int`, *optional*, defaults to 1024):
                Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
            history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
                Optional `Bark` speaker prompt.
        Returns:
            torch.LongTensor: Output coarse acoustics tokens.
        """

        if semantic_generation_config is None:
            raise ValueError("`semantic_generation_config` has to be provided")

        if coarse_generation_config is None:
            raise ValueError("`coarse_generation_config` has to be provided")

        max_coarse_input_length = coarse_generation_config.max_coarse_input_length
        max_coarse_history = coarse_generation_config.max_coarse_history
        sliding_window_len = coarse_generation_config.sliding_window_len

        # replace semantic_pad_token (eos_tok and pad_tok here) with coarse_semantic_pad_token i.e the pad_token
        # used in the next model
        semantic_output.masked_fill_(
            semantic_output == semantic_generation_config.semantic_pad_token,
            coarse_generation_config.coarse_semantic_pad_token,
        )

        semantic_to_coarse_ratio = (
            coarse_generation_config.coarse_rate_hz
            / semantic_generation_config.semantic_rate_hz
            * coarse_generation_config.n_coarse_codebooks
        )
        max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))

        # beware, depends on the seq_len of the longest sequence of the batch.
        # Also, the seq_len might be one token too long because of an added
        # pad_token as compared to Bark original implementation.
        max_generated_len = np.floor(
            semantic_output.shape[1] * semantic_to_coarse_ratio / coarse_generation_config.n_coarse_codebooks
        )
        max_generated_len = int(round(max_generated_len * coarse_generation_config.n_coarse_codebooks))

        batch_size = semantic_output.shape[0]

        x_semantic_history, x_coarse = self.preprocess_histories(
            history_prompt=history_prompt,
            max_coarse_history=max_coarse_history,
            semantic_to_coarse_ratio=semantic_to_coarse_ratio,
            batch_size=batch_size,
            semantic_generation_config=semantic_generation_config,
            codebook_size=codebook_size,
        )
        base_semantic_idx = x_semantic_history.shape[1]

        semantic_output = torch.hstack([x_semantic_history, semantic_output])

        n_window_steps = int(np.ceil(max_generated_len / sliding_window_len))

        total_generated_len = 0

        len_coarse_history = x_coarse.shape[1]

        for _ in range(n_window_steps):
            semantic_idx = base_semantic_idx + int(round(total_generated_len / semantic_to_coarse_ratio))

            # pad from right side
            input_coarse = semantic_output[:, np.max([0, semantic_idx - max_semantic_history]) :]
            input_coarse = input_coarse[:, :max_coarse_input_length]
            input_coarse = F.pad(
                input_coarse,
                (0, max_coarse_input_length - input_coarse.shape[-1]),
                "constant",
                coarse_generation_config.coarse_semantic_pad_token,
            )

            input_coarse = torch.hstack(
                [
                    input_coarse,
                    torch.tensor([[coarse_generation_config.coarse_infer_token]] * batch_size).to(self.device),
                    x_coarse[:, -max_coarse_history:],
                ]
            )

            alternatingLogitsProcessor = AlternatingCodebooksLogitsProcessor(
                input_coarse.shape[1],
                semantic_generation_config.semantic_vocab_size,
                codebook_size,
            )

            output_coarse = super().generate(
                input_coarse,
                logits_processor=[alternatingLogitsProcessor],
                max_new_tokens=min(sliding_window_len, max_generated_len - total_generated_len),
                generation_config=coarse_generation_config,
                **kwargs,
            )

            input_coarse_len = input_coarse.shape[1]

            x_coarse = torch.hstack([x_coarse, output_coarse[:, input_coarse_len:]])
            total_generated_len = x_coarse.shape[1] - len_coarse_history

            del output_coarse

        coarse_output = x_coarse[:, len_coarse_history:]

        return coarse_output


@add_start_docstrings(
    """Bark fine acoustics model. It is a non-causal GPT-like model with `config.n_codes_total` embedding layers and
    language modeling heads, one for each codebook.""",
    BARK_MODEL_START_DOCSTRING.format(config="BarkFineConfig"),
)
class BarkFineModel(BarkPreTrainedModel):
    base_model_prefix = "fine_acoustics"
    config_class = BarkFineConfig
    main_input_name = "codebook_idx"

    def __init__(self, config):
        # non-causal gpt-like model with one embedding layer and one lm_head for each codebook of Encodec
        super().__init__(config)
        self.config = config

        # initialize a modified non causal GPT-like model
        # note that for there is one embedding layer and one lm_head for each codebook of Encodec
        self.input_embeds_layers = nn.ModuleList(
            [nn.Embedding(config.input_vocab_size, config.hidden_size) for _ in range(config.n_codes_total)]
        )
        self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size)

        self.drop = nn.Dropout(config.dropout)

        self.layers = nn.ModuleList([BarkBlock(config, is_causal=False) for _ in range(config.num_layers)])

        self.layernorm_final = nn.LayerNorm(config.hidden_size)

        self.lm_heads = nn.ModuleList(
            [
                nn.Linear(config.hidden_size, config.output_vocab_size, bias=False)
                for _ in range(config.n_codes_given, config.n_codes_total)
            ]
        )
        self.gradient_checkpointing = False
        self.n_codes_total = config.n_codes_total

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        # one embedding layers for each codebook
        return self.input_embeds_layers

    def set_input_embeddings(self, new_embeddings):
        # one embedding layers for each codebook
        self.input_embeds_layers = new_embeddings

    def get_output_embeddings(self):
        # one lm_head for each codebook
        return self.lm_heads

    def set_output_embeddings(self, new_output_embeddings):
        # one lm_head for each codebook
        self.lm_heads = new_output_embeddings

    def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
        old_embeddings_list = self.get_input_embeddings()
        new_embeddings_list = nn.ModuleList(
            [
                self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
                for old_embeddings in old_embeddings_list
            ]
        )
        self.set_input_embeddings(new_embeddings_list)
        new_num_tokens = new_embeddings_list[0].weight.shape[0]

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head_list = self.get_output_embeddings()
            new_lm_head_list = nn.ModuleList(
                [self._get_resized_lm_head(old_lm_head, new_num_tokens) for old_lm_head in old_lm_head_list]
            )
            self.set_output_embeddings(new_lm_head_list)

        return self.get_input_embeddings()

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
        """
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.

        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.

        Arguments:
            new_num_tokens (`int`, *optional*):
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the embedding matrix to a multiple of the provided value.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

        Return:
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
        """
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        if new_num_tokens is None and pad_to_multiple_of is None:
            return model_embeds

        # Update base model and current model config
        self.config.output_vocab_size = model_embeds[0].weight.shape[0]
        self.config.vocab_size = model_embeds[0].weight.shape[0]
        self.output_vocab_size = model_embeds[0].weight.shape[0]
        self.vocab_size = model_embeds[0].weight.shape[0]

        # Tie weights again if needed
        self.tie_weights()

        return model_embeds

    def tie_weights(self):
        """
        Tie the weights between the input embeddings list and the output embeddings list.

        If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
        weights instead.
        """
        if getattr(self.config, "tie_word_embeddings", True):
            self._tied_weights_keys = []
            output_embeddings = self.get_output_embeddings()
            input_embeddings = self.get_input_embeddings()

            for i in range(self.config.n_codes_total - self.config.n_codes_given):
                # self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight
                self._tie_or_clone_weights(output_embeddings[i], input_embeddings[i + 1])
                self._tied_weights_keys.append(f"lm_heads.{i}.weight")

        for module in self.modules():
            if hasattr(module, "_tie_weights"):
                module._tie_weights()

    @add_start_docstrings_to_model_forward(BARK_FINE_INPUTS_DOCSTRING)
    def forward(
        self,
        codebook_idx: int,  # an additionnal idx corresponding to the id of the codebook that will be predicted
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        input_embeds: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if codebook_idx == 0:
            raise ValueError("Cannot predict 0th codebook - 0th codebook should be predicted by the coarse model")

        if input_ids is not None and input_embeds is not None:
            raise ValueError("You cannot specify both input_ids and input_embeds at the same time")

        if input_ids is None and input_embeds is None:
            raise ValueError("You have to specify either input_ids or input_embeds")

        if input_ids is not None:
            # the input_embeddings are the sum of the j previous codebooks embeddings before
            # the current codebook_idx codebook

            # forward the GPT model itself
            input_embeds = [
                input_embeds_layer(input_ids[:, :, i]).unsqueeze(-1)
                for i, input_embeds_layer in enumerate(self.input_embeds_layers)
            ]  # token embeddings of shape (b, t, n_embd)
            input_embeds = torch.cat(input_embeds, dim=-1)
            input_embeds = input_embeds[:, :, :, : codebook_idx + 1].sum(dim=-1)

        input_shape = input_embeds.size()[:-1]
        batch_size = input_embeds.shape[0]
        seq_length = input_shape[1]

        device = input_ids.device if input_ids is not None else input_embeds.device

        if position_ids is None:
            position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0)  # shape (1, seq_length)

        position_embeds = self.position_embeds_layer(position_ids)  # position embeddings of shape (1, t, n_embd)

        # Attention mask.
        if attention_mask is not None:
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")
            attention_mask = attention_mask.view(batch_size, -1)
            attention_mask = attention_mask[:, None, None, :]
            attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min

        head_mask = self.get_head_mask(head_mask, self.config.num_layers)

        hidden_states = self.drop(input_embeds + position_embeds)
        output_shape = input_shape + (hidden_states.size(-1),)

        all_self_attentions = () if output_attentions else None
        all_hidden_states = () if output_hidden_states else None

        for i, block in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            outputs = block(
                hidden_states,
                attention_mask=attention_mask,
                head_mask=head_mask[i],
                output_attentions=output_attentions,
            )

            hidden_states = outputs[0]

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[1],)

        hidden_states = self.layernorm_final(hidden_states)
        hidden_states = hidden_states.view(output_shape)

        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        logits = self.lm_heads[codebook_idx - self.config.n_codes_given](hidden_states)

        loss = None
        if labels is not None:
            raise NotImplementedError("Training is not implemented yet")

        if not return_dict:
            return tuple(v for v in [None, logits, all_hidden_states, all_self_attentions] if v is not None)

        return MaskedLMOutput(
            loss=loss,
            logits=logits,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
        )

    def generate(
        self,
        coarse_output: torch.Tensor,
        semantic_generation_config: BarkSemanticGenerationConfig = None,
        coarse_generation_config: BarkCoarseGenerationConfig = None,
        fine_generation_config: BarkFineGenerationConfig = None,
        codebook_size: int = 1024,
        history_prompt: Optional[Dict[str, torch.Tensor]] = None,
        **kwargs,
    ) -> torch.LongTensor:
        """
        Generates fine acoustics tokens from input coarse acoustics tokens and an additional optional `Bark` speaker
        prompt.

        Args:
            coarse_output (`torch.Tensor` of shape (batch_size, seq_len)):
                Input coarse acoustics ids, i.e the output of `BarkCoarseModel.generate`.
            semantic_generation_config (`BarkSemanticGenerationConfig`):
                Generation config indicating how to generate the semantic tokens.
            coarse_generation_config (`BarkCoarseGenerationConfig`):
                Generation config indicating how to generate the coarse tokens.
            fine_generation_config (`BarkFineGenerationConfig`):
                Generation config indicating how to generate the fine tokens.
            codebook_size (`int`, *optional*, defaults to 1024):
                Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
            history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
                Optional `Bark` speaker prompt.
        Returns:
            torch.LongTensor: Output fine acoustics tokens.
        """
        if semantic_generation_config is None:
            raise ValueError("`semantic_generation_config` has to be provided")

        if coarse_generation_config is None:
            raise ValueError("`coarse_generation_config` has to be provided")

        if fine_generation_config is None:
            raise ValueError("`fine_generation_config` has to be provided")

        # since we don't really use GenerationConfig through the fine model (autoencoder)
        # and since only temperature is used from the classic GenerationConfig parameters
        # manually impose the kwargs priority over the generation config
        temperature = kwargs.get("temperature", fine_generation_config.temperature)

        max_fine_history_length = fine_generation_config.max_fine_history_length
        max_fine_input_length = fine_generation_config.max_fine_input_length

        # shape: (batch, n_coarse_codebooks * seq_len)
        # new_shape: (batch, seq_len, n_coarse_codebooks)
        coarse_output = coarse_output.view(coarse_output.shape[0], -1, coarse_generation_config.n_coarse_codebooks)

        # brings ids into the range [0, codebook_size -1]
        coarse_output = torch.remainder(coarse_output - semantic_generation_config.semantic_vocab_size, codebook_size)
        batch_size = coarse_output.shape[0]

        if history_prompt is not None:
            x_fine_history = torch.repeat_interleave(history_prompt["fine_prompt"].T[None], batch_size, dim=0)
            # transpose to get to shape (seq_len, n_fine_codebooks)
        else:
            x_fine_history = None

        n_coarse = coarse_generation_config.n_coarse_codebooks

        # pad the last 6th codebooks
        fine_input = F.pad(
            coarse_output,
            (0, fine_generation_config.n_fine_codebooks - n_coarse),
            "constant",
            codebook_size,
        )

        # prepend history if available (max max_fine_history_length)
        if x_fine_history is not None:
            fine_input = torch.cat([x_fine_history[:, -max_fine_history_length:, :], fine_input], dim=1)

            # len of the fine_history that has been added to fine_input
            n_history = x_fine_history[:, -max_fine_history_length:, :].shape[1]
        else:
            n_history = 0

        n_remove_from_end = 0
        # need to pad if too short (since non-causal model)
        if fine_input.shape[1] < max_fine_input_length:
            n_remove_from_end = max_fine_input_length - fine_input.shape[1]
            fine_input = F.pad(fine_input, (0, 0, 0, n_remove_from_end), mode="constant", value=codebook_size)

        # we can be lazy about fractional loop and just keep overwriting codebooks.
        # seems that coarse_output.shape[1] - (max_fine_input_length - n_history) is equal to minus n_remove_from_end
        # So if we needed to pad because too short, n_loops is always 1 (because n_remove_from_end > 0)
        # If not, we loop over at least twice.

        n_loops = (coarse_output.shape[1] - (max_fine_input_length - n_history)) / max_fine_history_length
        n_loops = int(np.ceil(n_loops))
        n_loops = max(0, n_loops) + 1

        for n_outer in range(n_loops):
            start_idx = min([n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_input_length])

            start_fill_idx = min(
                [n_history + n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_history_length]
            )
            rel_start_fill_idx = start_fill_idx - start_idx
            input_buffer = fine_input[:, start_idx : start_idx + max_fine_input_length, :]
            for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks):
                logits = self.forward(n_inner, input_buffer).logits
                if temperature is None or temperature == 1.0:
                    relevant_logits = logits[:, rel_start_fill_idx:, :codebook_size]
                    codebook_preds = torch.argmax(relevant_logits, -1)
                else:
                    relevant_logits = logits[:, :, :codebook_size] / temperature
                    # apply softmax
                    probs = F.softmax(relevant_logits, dim=-1)[:, rel_start_fill_idx:max_fine_input_length]
                    # reshape to 2D: (batch_size, seq_len, codebook_size) -> (batch_size*seq_len, codebook_size)
                    probs = probs.reshape((-1, codebook_size))
                    # multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len)
                    codebook_preds = torch.multinomial(probs, num_samples=1).view(batch_size, -1)
                codebook_preds = codebook_preds.to(torch.int32)
                input_buffer[:, rel_start_fill_idx:, n_inner] = codebook_preds
                del logits, codebook_preds

            # transfer into fine_input
            for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks):
                fine_input[
                    :, start_fill_idx : start_fill_idx + (max_fine_input_length - rel_start_fill_idx), n_inner
                ] = input_buffer[:, rel_start_fill_idx:, n_inner]
            del input_buffer

        fine_input = fine_input.transpose(1, 2)[:, :, n_history:]
        if n_remove_from_end > 0:
            fine_input = fine_input[:, :, :-n_remove_from_end]

        if fine_input.shape[-1] != coarse_output.shape[-2]:
            raise ValueError("input and output should have the same seq_len")

        return fine_input


@add_start_docstrings(
    """
    The full Bark model, a text-to-speech model composed of 4 sub-models:
    - [`BarkSemanticModel`] (also referred to as the 'text' model): a causal auto-regressive transformer model that
      takes
    as input tokenized text, and predicts semantic text tokens that capture the meaning of the text.
    - [`BarkCoarseModel`] (also refered to as the 'coarse acoustics' model), also a causal autoregressive transformer,
    that takes into input the results of the last model. It aims at regressing the first two audio codebooks necessary
    to `encodec`.
    - [`BarkFineModel`] (the 'fine acoustics' model), this time a non-causal autoencoder transformer, which iteratively
    predicts the last codebooks based on the sum of the previous codebooks embeddings.
    - having predicted all the codebook channels from the [`EncodecModel`], Bark uses it to decode the output audio
      array.

    It should be noted that each of the first three modules can support conditional speaker embeddings to condition the
    output sound according to specific predefined voice.
    """,
    BARK_START_DOCSTRING,
)
class BarkModel(BarkPreTrainedModel):
    config_class = BarkConfig

    def __init__(self, config):
        super().__init__(config)

        self.semantic = BarkSemanticModel(config.semantic_config)
        self.coarse_acoustics = BarkCoarseModel(config.coarse_acoustics_config)
        self.fine_acoustics = BarkFineModel(config.fine_acoustics_config)

        self.codec_model = AutoModel.from_config(config.codec_config)

        self.config = config

    @property
    def device(self) -> torch.device:
        """
        `torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
        """
        # for bark_model, device must be verified on its sub-models
        # if has _hf_hook, has been offloaded so the device has to be found in the hook
        if not hasattr(self.semantic, "_hf_hook"):
            return get_parameter_device(self)
        for module in self.semantic.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)

    def enable_cpu_offload(self, gpu_id: Optional[int] = 0):
        r"""
        Offloads all sub-models to CPU using accelerate, reducing memory usage with a low impact on performance. This
        method moves one whole sub-model at a time to the GPU when it is used, and the sub-model remains in GPU until
        the next sub-model runs.

        Args:
            gpu_id (`int`, *optional*, defaults to 0):
                GPU id on which the sub-models will be loaded and offloaded.
        """
        if is_accelerate_available():
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate`.")

        device = torch.device(f"cuda:{gpu_id}")

        if self.device.type != "cpu":
            self.to("cpu")
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

        # this layer is used outside the first foward pass of semantic so need to be loaded before semantic
        self.semantic.input_embeds_layer, _ = cpu_offload_with_hook(self.semantic.input_embeds_layer, device)

        hook = None
        for cpu_offloaded_model in [
            self.semantic,
            self.coarse_acoustics,
            self.fine_acoustics,
        ]:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        self.fine_acoustics_hook = hook

        _, hook = cpu_offload_with_hook(self.codec_model, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.codec_model_hook = hook

    def codec_decode(self, fine_output):
        """Turn quantized audio codes into audio array using encodec."""

        fine_output = fine_output.transpose(0, 1)
        emb = self.codec_model.quantizer.decode(fine_output)
        out = self.codec_model.decoder(emb)
        audio_arr = out.squeeze(1)  # squeeze the codebook dimension

        return audio_arr

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.Tensor] = None,
        history_prompt: Optional[Dict[str, torch.Tensor]] = None,
        **kwargs,
    ) -> torch.LongTensor:
        """
        Generates audio from an input prompt and an additional optional `Bark` speaker prompt.

        Args:
            input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
                Input ids. Will be truncated up to 256 tokens. Note that the output audios will be as long as the
                longest generation among the batch.
            history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
                Optional `Bark` speaker prompt. Note that for now, this model takes only one speaker prompt per batch.
            kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments are of two types:

                - Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model.
                - With a *semantic_*, *coarse_*, *fine_* prefix, they will be input for the `generate` method of the
                semantic, coarse and fine respectively. It has the priority over the keywords without a prefix.

                This means you can, for example, specify a generation strategy for all sub-models except one.
        Returns:
            torch.LongTensor: Output generated audio.

        Example:

        ```python
        >>> from transformers import AutoProcessor, BarkModel

        >>> processor = AutoProcessor.from_pretrained("suno/bark-small")
        >>> model = BarkModel.from_pretrained("suno/bark-small")

        >>> # To add a voice preset, you can pass `voice_preset` to `BarkProcessor.__call__(...)`
        >>> voice_preset = "v2/en_speaker_6"

        >>> inputs = processor("Hello, my dog is cute, I need him in my life", voice_preset=voice_preset)

        >>> audio_array = model.generate(**inputs, semantic_max_new_tokens=100)
        >>> audio_array = audio_array.cpu().numpy().squeeze()
        ```
        """
        # TODO (joao):workaround until nested generation config is compatible with PreTrained Model
        # todo: dict
        semantic_generation_config = BarkSemanticGenerationConfig(**self.generation_config.semantic_config)
        coarse_generation_config = BarkCoarseGenerationConfig(**self.generation_config.coarse_acoustics_config)
        fine_generation_config = BarkFineGenerationConfig(**self.generation_config.fine_acoustics_config)

        kwargs_semantic = {
            # if "attention_mask" is set, it should not be passed to CoarseModel and FineModel
            "attention_mask": kwargs.pop("attention_mask", None)
        }
        kwargs_coarse = {}
        kwargs_fine = {}
        for key, value in kwargs.items():
            if key.startswith("semantic_"):
                key = key[len("semantic_") :]
                kwargs_semantic[key] = value
            elif key.startswith("coarse_"):
                key = key[len("coarse_") :]
                kwargs_coarse[key] = value
            elif key.startswith("fine_"):
                key = key[len("fine_") :]
                kwargs_fine[key] = value
            else:
                # If the key is already in a specific config, then it's been set with a
                # submodules specific value and we don't override
                if key not in kwargs_semantic:
                    kwargs_semantic[key] = value
                if key not in kwargs_coarse:
                    kwargs_coarse[key] = value
                if key not in kwargs_fine:
                    kwargs_fine[key] = value

        # 1. Generate from the semantic model
        semantic_output = self.semantic.generate(
            input_ids,
            history_prompt=history_prompt,
            semantic_generation_config=semantic_generation_config,
            **kwargs_semantic,
        )

        # 2. Generate from the coarse model
        coarse_output = self.coarse_acoustics.generate(
            semantic_output,
            history_prompt=history_prompt,
            semantic_generation_config=semantic_generation_config,
            coarse_generation_config=coarse_generation_config,
            codebook_size=self.generation_config.codebook_size,
            **kwargs_coarse,
        )

        # 3. "generate" from the fine model
        output = self.fine_acoustics.generate(
            coarse_output,
            history_prompt=history_prompt,
            semantic_generation_config=semantic_generation_config,
            coarse_generation_config=coarse_generation_config,
            fine_generation_config=fine_generation_config,
            codebook_size=self.generation_config.codebook_size,
            **kwargs_fine,
        )

        if getattr(self, "fine_acoustics_hook", None) is not None:
            # Manually offload fine_acoustics to CPU
            # and load codec_model to GPU
            # since bark doesn't use codec_model forward pass
            self.fine_acoustics_hook.offload()
            self.codec_model = self.codec_model.to(self.device)

        # 4. Decode the output and generate audio array
        audio = self.codec_decode(output)

        if getattr(self, "codec_model_hook", None) is not None:
            # Offload codec_model to CPU
            self.codec_model_hook.offload()

        return audio