Spaces:
Build error
Build error
File size: 5,412 Bytes
f93a3d8 bfa7fa8 f93a3d8 a45b5e7 f93a3d8 bfa7fa8 f93a3d8 97de291 f93a3d8 bfa7fa8 b768da6 a45b5e7 cb87d9f f93a3d8 578bca9 bfa7fa8 97de291 bfa7fa8 97de291 bfa7fa8 97de291 bfa7fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SEScore: a text generation evaluation metric"""
import evaluate
import datasets
import comet
from typing import Dict
import torch
from comet.encoders.base import Encoder
from comet.encoders.bert import BERTEncoder
from transformers import AutoModel, AutoTokenizer
class robertaEncoder(BERTEncoder):
def __init__(self, pretrained_model: str) -> None:
super(Encoder, self).__init__()
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
self.model = AutoModel.from_pretrained(
pretrained_model, add_pooling_layer=False
)
self.model.encoder.output_hidden_states = True
@classmethod
def from_pretrained(cls, pretrained_model: str) -> Encoder:
return robertaEncoder(pretrained_model)
def forward(
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs
) -> Dict[str, torch.Tensor]:
last_hidden_states, _, all_layers = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=False,
)
return {
"sentemb": last_hidden_states[:, 0, :],
"wordemb": last_hidden_states,
"all_layers": all_layers,
"attention_mask": attention_mask,
}
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
SEScore is an evaluation metric that trys to compute an overall score to measure text generation quality.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class SEScore(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value("string", id="sequence"),
'references': datasets.Value("string", id="sequence"),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""download SEScore checkpoints to compute the scores"""
# Download SEScore checkpoint
from comet import load_from_checkpoint
import os
from huggingface_hub import snapshot_download
# initialize roberta into str2encoder
comet.encoders.str2encoder['RoBERTa'] = robertaEncoder
destination = snapshot_download(repo_id="xu1998hz/sescore_english_mt", revision="main")
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/sescore_english_mt.ckpt')
def _compute(self, predictions, references, gpus=None, progress_bar=False):
if gpus is None:
gpus = 1 if torch.cuda.is_available() else 0
data = {"src": references, "mt": predictions}
print(data)
data = [dict(zip(data, t)) for t in zip(*data.values())]
print(data)
scores, mean_score = self.scorer.predict(data, gpus=gpus, progress_bar=progress_bar)
return {"mean_score": mean_score, "scores": scores}
|