File size: 1,254 Bytes
06b6e03
f93a3d8
 
 
 
 
 
bfa7fa8
06b6e03
d0ca111
06b6e03
 
 
 
f93a3d8
7e77f30
f93a3d8
 
 
7e77f30
f93a3d8
 
 
 
 
 
7e77f30
f93a3d8
 
 
7e77f30
f93a3d8
 
7e77f30
f93a3d8
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
title: SEScore
datasets:
-  
tags:
- evaluate
- metric
description: "SEScore: a text generation evaluation metric"
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
---

# Metric Card for SEScore
<img src="img/logo_sescore.png" alt="Alt text" title="SEScore logo">


## Metric Description
*SEScore is an unsupervised learned evaluation metric trained on synthesized dataset*

## How to Use

*Provide simplest possible example for using the metric*

### Inputs
*SEScore takes input of predictions (a list of candidate translations) and references (a list of reference translations).*

### Output Values

*Output value is between 0 to -25*

#### Values from Popular Papers


### Examples
*Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*

## Limitations and Bias
*Note any known limitations or biases that the metric has, with links and references if possible.*

## Citation
*Cite the source where this metric was introduced.*

## Further References
*Add any useful further references.*