Spaces:
Running
Running
File size: 51,947 Bytes
751936e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 |
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for using and training tokenizers (char, wordpiece, sentencepiece)"""
from collections import namedtuple
import random
import os
import csv
import torch
import itertools
import nltk
from nltk import tokenize as nltk_tokenize
import sentencepiece as spm
from .wordpiece import BertTokenizer, PRETRAINED_VOCAB_ARCHIVE_MAP
from .tokenization_gpt2 import GPT2Tokenizer
from . import sp_tokenizer
from .utils import print_rank_0
import regex as re
def make_tokenizer(tokenizer_type, corpus, model_path=None, vocab_size=None, model_type=None, pad_token=0,
character_coverage=1.0, command_tokens=None, type_tokens=None, fix_command_token=False, **kwargs):
"""
Helper function to instantiate a tokenizer given common combinations of options.
"""
tokenizer_class = tokenizer_type
if isinstance(tokenizer_class, str):
tokenizer_class = eval(tokenizer_class)
if tokenizer_class is BertWordPieceTokenizer:
return BertWordPieceTokenizer(model_type, **kwargs)
elif tokenizer_class is GPT2BPETokenizer:
if model_type is None:
model_type = 'gpt2'
return GPT2BPETokenizer(model_type, **kwargs)
elif tokenizer_class is ChineseSPTokenizer:
return ChineseSPTokenizer(fix_command_token=fix_command_token, **kwargs)
text_tokenizer = tokenizer_class(corpus=corpus, vocab_size=vocab_size, model_path=model_path, model_type=model_type,
pad_token=pad_token, character_coverage=character_coverage)
return Tokenizer(text_tokenizer, command_tokens, type_tokens)
class Tokenization(object):
"""
Tokenization object to hold tokenization, (processed text),and original
text. Can hold tokenization as Ids or tokens.
It also holds command tokens (pad, unk, etc.) for the tokenization.
This allows functions to pad/operate on tokenizations without having
access to the full tokenizer, just the tokenization.
Several standard array operations are implemented (insert, append, extend).
"""
def __init__(self, tokenization, text=None, original_text=None, command_tokens=None, asIds=True):
self.tokenization = tokenization
self.text = text
if self.text is None:
self.text = self.tokenization
self.original_text = original_text
if self.original_text is None:
self.original_text = self.text
self.command_tokens = command_tokens
self.asIds = asIds
self.parse_command_tokens()
def set_command_tokens(self, command_tokens):
self.command_tokens = command_tokens
return self.parse_command_tokens()
def parse_command_tokens(self):
if self.command_tokens is None:
return
for command_token in self.command_tokens:
if self.asIds:
setattr(self, command_token.name, command_token.Id)
else:
setattr(self, command_token.name, command_token.token)
def __getitem__(self, index):
return self.tokenization[index]
def __len__(self):
return len(self.tokenization)
def insert(self, idx, other):
if isinstance(other, (CommandToken, TypeToken)):
self.tokenization.insert(idx, other.Id)
if idx == 0:
self.text = other.token + self.text
self.original_text = other.token + self.original_text
elif idx == len(self.tokenization) - 1:
self.text += other.token
self.original_text += other.token
elif isinstance(other, Tokenization):
self.tokenization = self.tokenization[:idx] + other.tokenization + self.tokenization[idx:]
else:
self.tokenization = self.tokenization[:idx] + other.tokenization + self.tokenization[idx:]
def append(self, other):
if isinstance(other, (CommandToken, TypeToken)):
self.tokenization.append(other.Id)
self.text += other.token
self.original_text += other.token
elif isinstance(other, Tokenization):
self.tokenization.extend(other.tokenization)
self.text += other.text
self.original_text += other.original_text
else:
self.tokenization.append(other)
return self
def extend(self, other):
if isinstance(other, (CommandToken, TypeToken)):
self.tokenization.append(other.Id)
self.text += other.token
self.original_text += other.token
elif isinstance(other, list) and isinstance(other[0], (CommandToken, TypeToken)):
self.tokenization.extend([o.Id for o in other])
self.text += [o.token for o in other]
self.original_text += [o.token for o in other]
elif isinstance(other, Tokenization):
self.tokenization.extend(other.tokenization)
self.text += other.text
self.original_text += other.original_text
else:
self.tokenization.extend(other)
return self
"""define some default command tokens for the tokenizer to use"""
token_format = "<{0}>"
COMMAND_TUPLE = namedtuple('CommandToken', ('name', 'token', 'Id'))
def prep_command_tokens(tokenlist, token_format=token_format):
return [CommandToken(tok[0], token_format.format(tok[0]), tok[1]) for tok in tokenlist]
class CommandToken(object):
def __init__(self, name, token, Id, lstrip=False, rstrip=False):
self.name = name
self.token = token
self.Id = Id
self.lstrip = lstrip
self.rstrip = rstrip
def __str__(self):
return str(COMMAND_TUPLE(self.name, self.token, self.Id))
def __repr__(self):
return str(COMMAND_TUPLE(self.name, self.token, self.Id))
DEFAULT_COMMAND_TOKENS = [
('pad', 0),
('eos', 1),
('bos', 2),
('unk', 3),
('sep', 4),
('L2R', 5),
('ENC', 6),
('MASK', 7),
]
DEFAULT_COMMAND_TOKENS = prep_command_tokens(DEFAULT_COMMAND_TOKENS)
"""define some default type tokens for bert training"""
TYPE_TUPLE = namedtuple('TypeToken', ('name', 'token', 'Id'))
def prep_type_tokens(tokenlist, token_format=token_format):
return [TypeToken(tok[0], token_format.format(tok[0]), tok[1]) for tok in tokenlist]
class TypeToken(object):
def __init__(self, name, token, Id):
self.name = name
self.token = token
self.Id = Id
def __str__(self):
return str(TYPE_TUPLE(self.name, self.token, self.Id))
DEFAULT_TYPE_TOKENS = [
('function', 0),
('command', 1),
('str0', 2),
('str1', 3),
('str2', 4),
('embedding0', 5),
('embedding1', 6),
('embedding2', 7),
('arg0', 8),
('arg1', 9),
('arg2', 10),
]
DEFAULT_TYPE_TOKENS = prep_type_tokens(DEFAULT_TYPE_TOKENS)
class Tokenizer(object):
"""
Tokenizer object that handles text tokenization, command tokens, and type tokens.
Command tokens and text tokens are stored together in one mapping of size
`len(text_tokenizer)+len(command_tokens)`. Command tokens are stored as first
`len(command_tokens)` tokens. Token idx is stored at `idx+len(command_tokens)`.
Token types are stored in a separate mapping of size `len(type_tokens)`.
"""
def __init__(self, text_tokenizer, command_tokens=None, type_tokens=None):
# set text tokenizer
self.text_tokenizer = text_tokenizer
if not hasattr(self, 'num_text_tokens'):
self.num_text_tokens = len(self.text_tokenizer)
# set command tokens
if command_tokens is None:
command_tokens = DEFAULT_COMMAND_TOKENS
self._command_tokens = command_tokens
self.command_name_map = {tok.name: tok for tok in self._command_tokens}
self.command_token_map = {tok.token: tok for tok in self._command_tokens}
self.command_id_map = {tok.Id: tok for tok in self._command_tokens}
if not hasattr(self, 'num_command_tokens'):
self.num_command_tokens = len(self._command_tokens)
if not hasattr(self, 'num_tokens'):
self.num_tokens = self.num_command_tokens + self.num_text_tokens
# set type tokens
if type_tokens is None:
type_tokens = DEFAULT_TYPE_TOKENS
self.type_tokens = type_tokens
self.type_name_map = {tok.name: tok for tok in self.type_tokens}
self.type_token_map = {tok.token: tok for tok in self.type_tokens}
self.type_id_map = {tok.Id: tok for tok in self.type_tokens}
if not hasattr(self, 'num_type_tokens'):
self.num_type_tokens = len(self.type_tokens)
# parse tokens and vocabs from tokenizer
self._tokens = list(self.command_token_map.keys()) + list(self.text_tokenizer.tokens)
self._vocab = {t: Id for Id, t in self.command_id_map.items()}
self._vocab.update({t: Id + self.num_command_tokens for t, Id in self.text_tokenizer.vocab.items()})
self._text_tokens = list(self.text_tokenizer.tokens)
self._text_token_vocab = {t: Id + self.num_command_tokens for t, Id in self.text_tokenizer.vocab.items()}
self._command_token_tokens = list(self.command_token_map.keys())
self._command_token_vocab = {t: Id for Id, t in self.command_id_map.items()}
self._token_types = list(self.type_token_map.keys())
self._token_type_vocab = {t: Id for Id, t in self.type_id_map.items()}
def __call__(self, text, process_fn=None):
"""run preprocessing and encode text as Ids"""
return self.EncodeAsIds(text, process_fn=process_fn)
def __len__(self):
"""total number of tokens"""
return self.num_tokens
def get_command(self, name):
"""get command token corresponding to `name`"""
return self.command_name_map[name]
def get_type(self, name):
"""get type token corresponding to `name`"""
return self.type_name_map[name]
@property
def tokens(self):
"""list (or iterable) of all tokens for tokenizer"""
return self._tokens
@property
def vocab(self):
"""dictionary mapping tokens to ids for tokenizer"""
return self._vocab
@property
def token_types(self):
"""list (or iterable) of all token types for tokenizer"""
return self._token_types
@property
def token_type_vocab(self):
"""dictionary mapping token types to ids for tokenizer"""
return self._token_type_vocab
@property
def command_tokens(self):
"""list (or iterable) of all command tokens for tokenizer"""
return self._command_token_tokens
@property
def command_token_vocab(self):
"""dictionary mapping command tokens to ids for tokenizer"""
return self._command_token_vocab
@property
def text_tokens(self):
"""list (or iterable) of text tokens for text tokenizer"""
return self._text_tokens
@property
def text_token_vocab(self):
"""dictionary mapping text tokens to ids for text tokenizer"""
return self._text_token_vocab
def EncodeAsIds(self, text, process_fn=None):
"""
encode text using text tokenizer and shift Id values for command tokens
"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
def split_on_token(tok_extended: CommandToken, text):
result = []
tok = tok_extended.token
split_text = text.split(tok)
for i, sub_text in enumerate(split_text):
# CommandToken can control whitespace stripping around them.
# We use them for GPT2 and Roberta to have different behavior depending on the special token
# Cf. https://github.com/huggingface/transformers/pull/2778
# and https://github.com/huggingface/transformers/issues/3788
# Strip white spaces on the right
if tok_extended.rstrip and i > 0:
# A bit counter-intuitive but we strip the left of the string
# since tok_extended.rstrip means the special token is eating all white spaces on its right
sub_text = sub_text.lstrip()
# Strip white spaces on the left
if tok_extended.lstrip and i < len(split_text) - 1:
sub_text = sub_text.rstrip() # Opposite here
if i == 0 and not sub_text:
result.append(tok)
elif i == len(split_text) - 1:
if sub_text:
result.append(sub_text)
else:
pass
else:
if sub_text:
result.append(sub_text)
result.append(tok)
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
if not tok_list:
return self.text_tokenizer.encode(text)
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self._command_token_tokens:
tokenized_text.extend(split_on_token(tok, sub_text))
else:
tokenized_text.append(sub_text)
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self._encode(token) if token not in self._command_token_tokens else [
self.command_token_map[token].Id] for token in tokenized_text
)
)
)
no_split_tokens = self._command_tokens
Ids = split_on_tokens(no_split_tokens, processed_text)
tokenization = Tokenization(Ids, processed_text, text)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
def _encode(self, text):
raise NotImplementedError
def EncodeAsTokens(self, text, process_fn=None):
"""
encode text as tokens using text tokenizer
"""
tokenization = self.text_tokenizer.EncodeAsTokens(text, process_fn=process_fn)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
def IdToToken(self, Id, type_token=False):
"""convert Id to token accounting for command and type tokens"""
if isinstance(Id, (TypeToken, CommandToken)):
return Id.token
if type_token:
return self.type_id_map[Id].token
if Id < self.num_command_tokens:
return self.command_id_map[Id].token
return self.text_tokenizer.IdToToken(Id - self.num_command_tokens)
def TokenToId(self, token, type_token=False):
"""convert token to Id accounting for command and type tokens"""
if isinstance(token, (TypeToken, CommandToken)):
return token.Id
if type_token:
return self.type_token_map[token].Id
if token in self.command_token_map:
return self.command_token_map[token].Id
return self.text_tokenizer.TokenToId(token) + self.num_command_tokens
def DecodeIds(self, Ids, type_token=False):
"""
convert Ids to tokens accounting for command and type tokens, tokens
are joined and returned as a string.
"""
if type_token:
return ' '.join(Id.token if isinstance(Id, TypeToken) else self.type_id_map[Id].token for Id in Ids)
rtn_strs = []
current_str = []
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
for Id in Ids:
if isinstance(Id, CommandToken):
rtn_strs.append(self.text_tokenizer.DecodeIds(current_str))
current_str = []
rtn_strs.append(Id.token)
elif Id < self.num_command_tokens:
rtn_strs.append(self.text_tokenizer.DecodeIds(current_str))
current_str = []
rtn_strs.append(self.command_id_map[Id].token)
else:
current_str.append(Id - self.num_command_tokens)
if current_str != []:
rtn_strs.append(self.text_tokenizer.DecodeIds(current_str))
return ' '.join(rtn_strs)
def DecodeTokens(self, Tokens, type_token=False):
"""
convert tokens to a string accounting for command and type tokens.
"""
if type_token:
return ' '.join(t.token if isinstance(t, TypeToken) else t for t in Tokens)
rtn_strs = []
current_str = []
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
for t in Tokens:
if isinstance(t, CommandToken):
rtn_strs.append(self.text_tokenizer.DecodeTokens(current_str))
current_str = []
rtn_strs.append(t.token)
elif t in self.command_token_map:
rtn_strs.append(self.text_tokenizer.DecodeTokens(current_str))
current_str = []
rtn_strs.append(t)
else:
current_str.append(t)
if current_str != []:
rtn_strs.append(self.text_tokenizer.DecodeTokens(current_str))
return ' '.join(rtn_strs)
class TextTokenizer(object):
"""
Interface for text tokenizer
"""
def __init__(self):
if not hasattr(self, 'num_text_tokens'):
self.num_text_tokens = 0
if not hasattr(self, 'num_tokens'):
self.num_tokens = self.num_text_tokens
def __call__(self, text, process_fn=None):
return self.EncodeAsIds(text, process_fn)
def __len__(self):
return self.num_text_tokens
@property
def tokens(self):
"""list (or iterable) of text tokens for text tokenizer"""
raise NotImplementedError('TextTokenizer tokens property not implemented')
@property
def vocab(self):
"""dictionary mapping tokens to ids"""
raise NotImplementedError('TextTokenizer vocab property not implemented')
@staticmethod
def exists(model_path):
"""check if the filepath for a text tokenizer exists"""
raise NotImplementedError('TextTokenizer exists method not implemented')
def Train(self, corpus):
"""train a tokenizer on a data corpus and save model for future use"""
raise NotImplementedError('TextTokenizer Train not implemented')
def EncodeAsIds(self, text, process_fn=None):
"""
Preprocess text and encode as ids. Return a tokenization object with
original text, processed text, and id tokenization.
"""
raise NotImplementedError('TextTokenizer EncodeAsIds not implemented')
def EncodeAsTokens(self, text, process_fn=None):
"""
Preprocess text and encode as tokens. Return a tokenization object with
original text, processed text, and token tokenization.
"""
raise NotImplementedError('TextTokenizer EncodeAsTokens not implemented')
def IdToToken(self, Id):
"""Convert an Id to Token. Reverse lookup of self.vocab"""
raise NotImplementedError('TextTokenizer IdToToken not implemented')
def TokenToId(self, token):
"""Convert a Token to Id. Lookup of self.vocab"""
raise NotImplementedError('TextTokenizer TokenToId not implemented')
def DecodeIds(self, Ids):
"""Convert a list or tokenization object of Ids to a text string"""
raise NotImplementedError('TextTokenizer DecodeIds not implemented')
def DecodeTokens(self, Tokens):
"""Convert a list or tokenization object of tokens to a text string"""
raise NotImplementedError('TextTokenizer DecodeTokens not implemented')
class CharacterLevelTokenizer(TextTokenizer):
"""
Text tokenizer for ASCII-256 Character Level Tokenization.
"""
def __init__(self, **kwargs):
self.num_text_tokens = 256
super(CharacterLevelTokenizer, self).__init__()
self._tokens = [self.IdToToken(Id) for Id in range(self.num_text_tokens)]
self._vocab = {t: i for i, t in enumerate(self._tokens)}
def __len__(self):
return 256
@staticmethod
def exists(model_path):
return True
def Train(self, corpus):
pass
@property
def tokens(self):
return self._tokens
@property
def vocab(self):
return self._vocab
def EncodeAsIds(self, text, process_fn=None):
"""convert text to ascii 256 Ids"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
processed_text = str(processed_text)
tokens = [self.TokenToId(c) for c in processed_text]
return Tokenization(tokens, processed_text, text)
def EncodeAsTokens(self, text, process_fn=None):
"""convert text to ascii 256 characters"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
processed_text = str(processed_text)
tokens = [c for c in processed_text]
return Tokenization(tokens, processed_text, text, asIds=False)
def IdToToken(self, Id):
"""ascii index to character"""
return chr(Id)
def TokenToId(self, token):
"""ascii character to index"""
return ord(token)
def DecodeIds(self, Ids):
"""converts ascii ids to tokens before joining them into text"""
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
return ''.join([self.IdToToken(tok) for tok in Ids])
def DecodeTokens(self, Tokens):
"""just concatenates ascii tokens into text"""
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return ''.join(Tokens)
MAX_SENTENCEPIECE_SENTENCES = 100000000
def get_corpus_freq(dataset, filepath, filetype='tsv'):
"""
Take corpus, split it into sentences, and extract word frequencies.
Write frequencies to `filepath` as a tsv. Only write the first
MAX_SENTENCEPIECE_SENTENCES most common words to the file.
"""
nltk.download('punkt', download_dir="./nltk")
if filetype == 'tsv':
delimiter = '\t'
else:
delimiter = ','
print("compute corpus frequency\n", flush=True)
total_sentence_count = 0
maxlen = 0
freqs = {}
for entry in dataset:
if isinstance(entry, dict):
entry = entry['text']
lines = entry.strip().split('\n')
for line in lines:
sentences = nltk_tokenize.sent_tokenize(line)
total_sentence_count += len(sentences)
for sentence in sentences:
maxlen = max(len(line), maxlen)
for word in sentence.split():
if word not in freqs:
freqs[word] = 0
freqs[word] += 1
print("length of freqs before truncating " + str(len(freqs)), flush=True)
print("file path for freq " + str(filepath), flush=True)
freqs_sorted = {}
counter = 0
for word, count in sorted(freqs.items(), key=lambda x: x[1], reverse=True):
if counter >= MAX_SENTENCEPIECE_SENTENCES:
break
counter += 1
freqs_sorted[word] = count
print("length of freqs after trancating " + str(len(freqs_sorted)), flush=True)
with open(filepath, 'w') as f:
writer = csv.writer(f, delimiter=delimiter)
for k, v in freqs_sorted.items():
writer.writerow([str(k), str(v)])
return total_sentence_count, maxlen
class SentencePieceTokenizer(TextTokenizer):
"""Trains and uses sentencepiece for text tokenization"""
def __init__(self, model_type='bpe', vocab_size=None, corpus=None, model_path=None, character_coverage=1.0,
**kwargs):
self.character_coverage = character_coverage
self.model_type = model_type.lower()
self.spm_model = model_path
self.num_text_tokens = vocab_size
make_train = not SentencePieceTokenizer.exists(self.spm_model)
if make_train:
assert corpus is not None and self.num_text_tokens is not None
self.Train(corpus, self.num_text_tokens)
self._tokens = []
self._vocab = {}
self.load_spm_model()
super(SentencePieceTokenizer, self).__init__()
def __len__(self):
return self.num_text_tokens
@property
def tokens(self):
return self._tokens
@property
def vocab(self):
return self._vocab
@staticmethod
def exists(model_path):
if model_path is None:
return False
# check if path exists
dne = not os.path.exists(model_path)
# check if path.model exists
if dne and not model_path.endswith('.model'):
dne = not os.path.exists(model_path + '.model')
return not dne
def load_spm_model(self):
"""load sentencepiece model and parse vocab"""
if not os.path.exists(self.spm_model) and not self.spm_model.endswith('.model'):
self.spm_model = self.spm_model + '.model'
self.sp = spm.SentencePieceProcessor()
self.sp.Load(self.spm_model)
self.vocab_size = self.num_text_tokens = len(self.sp)
self._tokens = [self.IdToToken(t) for t in range(self.vocab_size)]
self._vocab = {t: i for i, t in enumerate(self._tokens)}
def Train(self, corpus, num_text_tokens):
"""train sentencepiece model on corpus using word frequencies"""
self.num_text_tokens = num_text_tokens
use_model_path = self.spm_model
random_hash = str(random.randint(0, 2147483647))
if use_model_path is None:
use_model_path = random_hash
if use_model_path.endswith('.model'):
use_model_path = use_model_path[:use_model_path.rfind('.model')]
input_path = use_model_path + '.tsv.' + random_hash
line_count, maxlenline = get_corpus_freq(corpus, input_path)
line_count = min(line_count, MAX_SENTENCEPIECE_SENTENCES)
print('line count used as input_sentence_size ', line_count, flush=True)
print('training sentencepiece model', flush=True)
train_string = '--input={file_path} --model_prefix={model_prefix} --vocab_size={vocab_size}' \
+ ' --model_type={model_type} --character_coverage={character_coverage} ' \
+ '--input_sentence_size={input_sentence_size} ' \
+ '--input_format=tsv'
train_string = train_string.format(file_path=input_path, model_prefix=use_model_path,
vocab_size=num_text_tokens,
model_type=self.model_type, character_coverage=self.character_coverage,
input_sentence_size=int(line_count)) # , #)#,
print("calling spm.SentencePieceTrainer.Train(%s)" % (train_string), flush=True)
spm.SentencePieceTrainer.Train(train_string)
os.remove(input_path)
self.spm_model = use_model_path + '.model'
print('sentencepiece model written to ' + self.spm_model, flush=True)
def EncodeAsIds(self, text, process_fn=None):
"""convert text to sentencepiece Ids"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = self.sp.EncodeAsIds(processed_text)
return Tokenization(tokens, processed_text, text)
def EncodeAsTokens(self, text, process_fn=None):
"""convert text to sentencepiece tokens"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = self.sp.EncodeAsTokens(processed_text)
return Tokenization(tokens, processed_text, text, asIds=False)
def IdToToken(self, Id):
"""convert Id to sentencpiece token"""
return self.sp.IdToPiece(Id)
def TokenToId(self, token):
"""convert sentencpiece token to Id"""
return self.sp.PieceToId(token)
def DecodeIds(self, Ids):
"""converts ids to a text string"""
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
return self.sp.DecodeIds(Ids)
def DecodeTokens(self, Tokens):
"""converts sentencepiece tokens to a text string"""
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return self.sp.DecodeTokens(Tokens)
class BertWordPieceTokenizer(Tokenizer):
"""
Loads a pretrained WordPiece tokenizer from `cache_dir` for tokenization
in BERT training. Default to bert-large-uncased tokenizer.
"""
def __init__(self, tokenizer_model_type=None, cache_dir=None, add_block_symbols=False, add_sentinel_token=0,
add_task_mask=False, add_decoder_mask=False, **kwargs):
# default to bert-large-uncased tokenizer
if tokenizer_model_type not in PRETRAINED_VOCAB_ARCHIVE_MAP:
tokenizer_model_type = 'bert-large-uncased'
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
print('loading BertWordPieceTokenizer (', tokenizer_model_type, ') from cache_dir ', cache_dir)
do_lower_case = not ('-cased' in tokenizer_model_type or 'chinese' in tokenizer_model_type)
self.text_tokenizer = BertTokenizer.from_pretrained(tokenizer_model_type, do_lower_case=do_lower_case,
cache_dir=cache_dir)
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
print('loaded', tokenizer_model_type)
# disable max len warnings by increasing max len
self.text_tokenizer.max_len = int(1e12)
# set command tokens from wordpiece tokenizer values
self.num_command_tokens = 6
self.num_tokens = len(self.text_tokenizer.vocab)
self.num_text_tokens = self.num_tokens - 5
self.num_type_tokens = 2
self._command_tokens = [
CommandToken('pad', '[PAD]', self.text_tokenizer.vocab['[PAD]']),
CommandToken('ENC', '[CLS]', self.text_tokenizer.vocab['[CLS]']),
CommandToken('MASK', '[MASK]', self.text_tokenizer.vocab['[MASK]']),
CommandToken('unk', '[UNK]', self.text_tokenizer.vocab['[UNK]']),
CommandToken('sep', '[SEP]', self.text_tokenizer.vocab['[SEP]']),
CommandToken('eos', '[PAD]', self.text_tokenizer.vocab['[PAD]']),
]
if add_block_symbols:
self._command_tokens.extend([
CommandToken('sop', '<|startofpiece|>', self.num_tokens),
CommandToken('eop', '<|endofpiece|>', self.num_tokens + 1)
])
self.num_tokens += 2
self.num_command_tokens += 2
if add_task_mask:
self._command_tokens.extend([
CommandToken('gMASK', '[gMASK]', self.num_tokens),
CommandToken('sMASK', '[sMASK]', self.num_tokens + 1)
])
self.num_tokens += 2
self.num_command_tokens += 2
if add_decoder_mask:
self._command_tokens.extend([
CommandToken('dBLOCK', '[dBLOCK]', self.num_tokens)
])
self.num_tokens += 1
self.num_command_tokens += 1
if add_sentinel_token > 0:
for i in range(1, add_sentinel_token):
self._command_tokens.extend([CommandToken(f'MASK{i}', f'[MASK{i}]', self.num_tokens),
CommandToken(f'sop{i}', f'<|startofpiece{i}|>', self.num_tokens + 1)])
self.num_tokens += 2
self.num_command_tokens += 2
self.command_name_map = {tok.name: tok for tok in self._command_tokens}
self.command_token_map = {tok.token: tok for tok in self._command_tokens}
self.command_id_map = {tok.Id: tok for tok in self._command_tokens}
# set type tokens
self.type_tokens = [
TypeToken('str0', '<str0>', 0),
TypeToken('str1', '<str1>', 1),
]
self.type_name_map = {tok.name: tok for tok in self.type_tokens}
self.type_token_map = {tok.token: tok for tok in self.type_tokens}
self.type_id_map = {tok.Id: tok for tok in self.type_tokens}
# parse tokens and vocabs from tokenizer
self._tokens = list(self.text_tokenizer.vocab.keys())
self._vocab = {k: v for k, v in self.text_tokenizer.vocab.items()}
self._text_tokens = list(self._tokens)
self._text_token_vocab = {k: v for k, v in self.text_tokenizer.vocab.items()}
self._command_token_tokens = list(self.command_token_map.keys())
self._command_token_vocab = {t: Id for Id, t in self.command_id_map.items()}
self._token_types = list(self.type_token_map.keys())
self._token_type_vocab = {t: Id for Id, t in self.type_id_map.items()}
def _encode(self, text):
tokens = self.text_tokenizer.tokenize(text)
ids = self.text_tokenizer.convert_tokens_to_ids(tokens)
return ids
def EncodeAsTokens(self, text, process_fn=None):
"""convert wordpiece token to Id"""
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = self.text_tokenizer.tokenize(processed_text)
return Tokenization(tokens, processed_text, text, asIds=False)
def IdToToken(self, Id, type_token=False):
"""convert Id to sentencpiece token"""
if isinstance(Id, (TypeToken, CommandToken)):
return Id.token
if type_token:
return self.type_id_map[Id].token
if Id in self.command_id_map:
return self.command_id_map[Id].token
return self.text_tokenizer.ids_to_tokens[Id]
def TokenToId(self, token, type_token=False):
"""convert sentencpiece token to Id"""
if isinstance(token, (TypeToken, CommandToken)):
return token.Id
if type_token:
return self.type_token_map[token].Id
token = token.strip()
return self.text_tokenizer.vocab[token]
def DecodeIds(self, Ids, type_token=False):
"""converts ids to wordpiece tokens and joins them as a text string"""
if type_token:
return ' '.join(Id.token if isinstance(Id, TypeToken) else self.type_id_map[Id].token for Id in Ids)
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
Tokens = []
for Id in Ids:
if Id in self.command_id_map:
Tokens.append(self.command_id_map[Id].token)
elif Id in self.text_tokenizer.ids_to_tokens:
Tokens.append(self.text_tokenizer.ids_to_tokens[Id])
new_tokens = []
for token in Tokens:
if token.startswith('##') and len(new_tokens) > 0:
new_tokens[-1] += token[2:]
else:
new_tokens.append(token)
return ' '.join(new_tokens)
def DecodeTokens(self, Tokens, type_token=False):
"""converts wordpiece tokens to a text string"""
if type_token:
return ' '.join(t.token if isinstance(t, TypeToken) else t for t in Tokens)
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return ' '.join(Tokens)
class GPT2BPETokenizer(Tokenizer):
def __init__(self, model_type_or_path, cache_dir=None, add_block_symbols=False, add_task_mask=False,
add_decoder_mask=False, **kwargs):
self.text_tokenizer = GPT2Tokenizer.from_pretrained(model_type_or_path,
cache_dir=cache_dir)
# disable max len warnings by increasing max len
self.text_tokenizer.max_len = int(1e12)
self.num_tokens = len(self.text_tokenizer.encoder)
self.num_type_tokens = 2
if model_type_or_path.startswith('roberta'):
self.num_command_tokens = 6
self.num_text_tokens = self.num_tokens - 3
self._command_tokens = [
CommandToken('pad', '<|endoftext|>', self.text_tokenizer.encoder['</s>']),
CommandToken('eos', '<|endoftext|>', self.text_tokenizer.encoder['</s>']),
CommandToken('sep', '[SEP]', self.text_tokenizer.encoder['</s>']),
CommandToken('ENC', '[CLS]', self.text_tokenizer.encoder['<s>']),
CommandToken('MASK', '[MASK]', self.text_tokenizer.encoder['<mask>'], lstrip=True),
CommandToken('unk', '[UNK]', self.text_tokenizer.encoder['<unk>'])
]
if add_block_symbols:
self._command_tokens.extend([
CommandToken('sop', '<|startofpiece|>', self.num_tokens),
CommandToken('eop', '<|endofpiece|>', self.num_tokens + 1)
])
self.num_tokens += 2
self.num_command_tokens += 2
else:
self.num_command_tokens = 2
self.num_text_tokens = self.num_tokens - 1
self._command_tokens = [
CommandToken('pad', '<|endoftext|>', self.text_tokenizer.encoder['<|endoftext|>']),
CommandToken('eos', '<|endoftext|>', self.text_tokenizer.encoder['<|endoftext|>'])
]
if add_block_symbols:
self._command_tokens.extend([
CommandToken('sop', '<|startofpiece|>', self.num_tokens),
CommandToken('eop', '<|endofpiece|>', self.num_tokens + 1),
CommandToken('ENC', '[CLS]', self.num_tokens + 2),
CommandToken('MASK', '[MASK]', self.num_tokens + 3, lstrip=True),
CommandToken('sep', '[SEP]', self.num_tokens + 4),
CommandToken('unk', '[UNK]', self.num_tokens + 5)
])
self.num_tokens += 6
self.num_command_tokens += 6
if add_block_symbols:
if add_task_mask:
self._command_tokens.extend([
CommandToken('gMASK', '[gMASK]', self.num_tokens, lstrip=True),
CommandToken('sMASK', '[sMASK]', self.num_tokens + 1, lstrip=True)
])
self.num_tokens += 2
self.num_command_tokens += 2
if add_decoder_mask:
self._command_tokens.extend([
CommandToken('dBLOCK', '[dBLOCK]', self.num_tokens)
])
self.num_tokens += 1
self.num_command_tokens += 1
self.command_name_map = {tok.name: tok for tok in self._command_tokens}
self.command_token_map = {tok.token: tok for tok in self._command_tokens}
self.command_id_map = {tok.Id: tok for tok in self._command_tokens}
self.type_tokens = [
TypeToken('str0', '<str0>', 0),
TypeToken('str1', '<str1>', 1),
]
self.type_name_map = {tok.name: tok for tok in self.type_tokens}
self.type_token_map = {tok.token: tok for tok in self.type_tokens}
self.type_id_map = {tok.Id: tok for tok in self.type_tokens}
self._tokens = list(self.text_tokenizer.encoder.keys())
self._vocab = {k: v for k, v in self.text_tokenizer.encoder.items()}
self._text_tokens = list(self._tokens)
self._text_token_vocab = {k: v for k, v in self.text_tokenizer.encoder.items()}
self._command_token_tokens = list(self.command_token_map.keys())
self._command_token_vocab = {t: Id for Id, t in self.command_id_map.items()}
self._token_types = list(self.type_token_map.keys())
self._token_type_vocab = {t: Id for Id, t in self.type_id_map.items()}
for idx, tok in self.command_id_map.items():
self.text_tokenizer.decoder[idx] = tok.token
def EncodeAsIds(self, text, process_fn=None):
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
def split_on_token(tok_extended: CommandToken, text):
result = []
tok = tok_extended.token
split_text = text.split(tok)
for i, sub_text in enumerate(split_text):
# CommandToken can control whitespace stripping around them.
# We use them for GPT2 and Roberta to have different behavior depending on the special token
# Cf. https://github.com/huggingface/transformers/pull/2778
# and https://github.com/huggingface/transformers/issues/3788
# Strip white spaces on the right
if tok_extended.rstrip and i > 0:
# A bit counter-intuitive but we strip the left of the string
# since tok_extended.rstrip means the special token is eating all white spaces on its right
sub_text = sub_text.lstrip()
# Strip white spaces on the left
if tok_extended.lstrip and i < len(split_text) - 1:
sub_text = sub_text.rstrip() # Opposite here
if i == 0 and not sub_text:
result.append(tok)
elif i == len(split_text) - 1:
if sub_text:
result.append(sub_text)
else:
pass
else:
if sub_text:
result.append(sub_text)
result.append(tok)
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
if not tok_list:
return self.text_tokenizer.encode(text)
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self._command_token_tokens:
tokenized_text.extend(split_on_token(tok, sub_text))
else:
tokenized_text.append(sub_text)
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self.text_tokenizer.encode(token) if token not in self._command_token_tokens else [
self.command_token_map[token].Id] for token in tokenized_text
)
)
)
no_split_tokens = self._command_tokens
Ids = split_on_tokens(no_split_tokens, processed_text)
tokenization = Tokenization(Ids, processed_text, text)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
def _encode(self, text):
return self.text_tokenizer.encode(text)
def EncodeAsTokens(self, text, process_fn=None):
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = []
for token in re.findall(self.text_tokenizer.pat, processed_text):
token = ''.join(self.text_tokenizer.bye_encoder[b] for b in token.encode('utf-8'))
tokens.extend(bpe_token for bpe_token in self.text_tokenizer.bpe(token).split(' '))
tokenization = Tokenization(tokens, processed_text, text, asIds=False)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
def DecodeAsTokens(self, Ids):
return [self.IdToToken(x) for x in Ids]
def IdToToken(self, Id, type_token=False):
if isinstance(Id, (TypeToken, CommandToken)):
return Id.token
if type_token:
return self.type_id_map[Id].token
if Id in self.command_id_map:
return self.command_id_map[Id].token
return self.text_tokenizer.decoder[Id]
def TokenToId(self, token, type_token=False):
if isinstance(token, (TypeToken, CommandToken)):
return token.Id
if type_token:
return self.type_token_map[token].Id
return self.text_tokenizer.encoder[token]
def DecodeIds(self, Ids, type_token=False):
if type_token:
return ' '.join(Id.token if isinstance(Id, TypeToken) else self.type_id_map[Id].token for Id in Ids)
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
return self.text_tokenizer.decode(Ids)
def DecodeTokens(self, Tokens, type_token=False):
if type_token:
return ' '.join(t.token if isinstance(t, TypeToken) else t for t in Tokens)
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return self.text_tokenizer.decode([self.TokenToId(tok) for tok in Tokens])
class ChineseSPTokenizer(Tokenizer):
def __init__(self, add_block_symbols=False, add_task_mask=False, add_decoder_mask=False, fix_command_token=False,
**kwargs):
self.text_tokenizer = sp_tokenizer.from_pretrained()
self.num_command_tokens = 0
self.num_text_tokens = self.text_tokenizer.sp.vocab_size()
self.num_tokens = self.num_text_tokens
self.num_type_tokens = 2
self._command_tokens = [
CommandToken('pad', '<|endoftext|>', self.num_text_tokens),
CommandToken('eos', '<|endoftext|>', self.num_text_tokens),
CommandToken('sep', '[SEP]', self.num_text_tokens + 1),
CommandToken('ENC', '[CLS]', self.num_text_tokens + 2),
CommandToken('MASK', '[MASK]', self.num_text_tokens + 3, lstrip=True),
CommandToken('unk', '[UNK]', self.num_text_tokens + 4)
]
self.num_tokens += 5
self.num_command_tokens += 6
if add_block_symbols:
self._command_tokens.extend([
CommandToken('sop', '<|startofpiece|>', self.num_tokens + 1),
CommandToken('eop', '<|endofpiece|>', self.num_tokens + 2)
])
if fix_command_token:
self.num_tokens += 3
else:
self.num_tokens += 2
self.num_command_tokens += 2
if add_task_mask:
if fix_command_token:
self._command_tokens.extend([
CommandToken('sMASK', '[sMASK]', self.num_tokens, lstrip=True),
CommandToken('gMASK', '[gMASK]', self.num_tokens + 1, lstrip=True)
])
else:
self._command_tokens.extend([
CommandToken('gMASK', '[gMASK]', self.num_tokens, lstrip=True),
CommandToken('sMASK', '[sMASK]', self.num_tokens + 1, lstrip=True)
])
self.num_tokens += 2
self.num_command_tokens += 2
if add_decoder_mask:
self._command_tokens.extend([
CommandToken('dBLOCK', '[dBLOCK]', self.num_tokens)
])
self.num_tokens += 1
self.num_command_tokens += 1
self.command_name_map = {tok.name: tok for tok in self._command_tokens}
self.command_token_map = {tok.token: tok for tok in self._command_tokens}
self.command_id_map = {tok.Id: tok for tok in self._command_tokens}
print_rank_0({tok.name: tok.Id for tok in self._command_tokens})
self.type_tokens = [
TypeToken('str0', '<str0>', 0),
TypeToken('str1', '<str1>', 1),
]
self.type_name_map = {tok.name: tok for tok in self.type_tokens}
self.type_token_map = {tok.token: tok for tok in self.type_tokens}
self.type_id_map = {tok.Id: tok for tok in self.type_tokens}
# self._tokens = list(self.text_tokenizer.encoder.keys())
# self._vocab = {k:v for k,v in self.text_tokenizer.encoder.items()}
#
# self._text_tokens = list(self._tokens)
# self._text_token_vocab = {k:v for k,v in self.text_tokenizer.encoder.items()}
self._command_token_tokens = list(self.command_token_map.keys())
self._command_token_vocab = {t: Id for Id, t in self.command_id_map.items()}
self._token_types = list(self.type_token_map.keys())
self._token_type_vocab = {t: Id for Id, t in self.type_id_map.items()}
def _encode(self, text):
ids = self.text_tokenizer.encode(text)
return ids
def EncodeAsTokens(self, text, process_fn=None):
processed_text = text
if process_fn is not None:
processed_text = process_fn(processed_text)
tokens = self.text_tokenizer.tokenize(processed_text)
tokenization = Tokenization(tokens, processed_text, text, asIds=False)
tokenization.set_command_tokens(self._command_tokens)
return tokenization
# return Tokenization(tokens, processed_text, text, asIds=False)
def IdToToken(self, Id, type_token=False):
if isinstance(Id, (TypeToken, CommandToken)):
return Id.token
if type_token:
return self.type_id_map[Id].token
if Id in self.command_id_map:
return self.command_id_map[Id].token
elif Id in self.type_id_map:
return self.type_id_map[Id].token
else:
return self.text_tokenizer.convert_id_to_token(int(Id))
def TokenToId(self, token, type_token=False):
if isinstance(token, (TypeToken, CommandToken)):
return token.Id
if type_token:
return self.type_token_map[token].Id
return self.text_tokenizer.convert_token_to_id(token)
def DecodeIds(self, Ids, type_token=False):
if type_token:
return ' '.join(Id.token if isinstance(Id, TypeToken) else self.type_id_map[Id].token for Id in Ids)
if isinstance(Ids, Tokenization):
Ids = Ids.tokenization
Ids = list(map(int, Ids))
pieces = []
last = 0
for i, token_id in enumerate(Ids):
if token_id in self.command_id_map:
pieces.append(Ids[last: i])
pieces.append(token_id)
last = i + 1
pieces.append(Ids[last:])
text = ""
for piece in pieces:
if isinstance(piece, int):
text += self.command_id_map[piece].token
elif piece:
text += self.text_tokenizer.decode(piece)
return text
def DecodeTokens(self, Tokens, type_token=False):
if type_token:
return ' '.join(t.token if isinstance(t, TypeToken) else t for t in Tokens)
if isinstance(Tokens, Tokenization):
Tokens = Tokens.tokenization
return self.text_tokenizer.decode([self.TokenToId(tok) for tok in Tokens]) |