File size: 16,159 Bytes
54199b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import argparse
import ast


def get_default_params(model_name):
    # Params from paper (https://arxiv.org/pdf/2103.00020.pdf)
    model_name = model_name.lower()
    if "vit" in model_name:
        return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.98, "eps": 1.0e-6}
    else:
        return {"lr": 5.0e-4, "beta1": 0.9, "beta2": 0.999, "eps": 1.0e-8}


class ParseKwargs(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        kw = {}
        for value in values:
            key, value = value.split('=')
            try:
                kw[key] = ast.literal_eval(value)
            except ValueError:
                kw[key] = str(value)  # fallback to string (avoid need to escape on command line)
        setattr(namespace, self.dest, kw)


def parse_args(args):
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--exp-name",
        type=str,
        help="the name of experiment",
    )
    parser.add_argument(
        "--no-text-condition",
        action='store_true',
        help="whether to use text condition",
    )
    parser.add_argument(
        "--train-data",
        type=str,
        default=None,
        help="Path to file(s) with training data. When using webdataset, multiple datasources can be combined using the `::` separator.",
        nargs='+',
    )
    parser.add_argument(
        "--train-data-sample-ratio",
        type=float,
        default=[1.0],
        help="When using multiple data sources, this controls the sample ratio. ",
        nargs='+',
    )
    parser.add_argument(
        "--train-data-upsampling-factors",
        type=str,
        default=None,
        help=(
            "When using multiple data sources with webdataset and sampling with replacement, this can be used to upsample specific data sources. "
            "Similar to --train-data, this should be a string with as many numbers as there are data sources, separated by `::` (e.g. 1::2::0.5) "
            "By default, datapoints are sampled uniformly regardless of the dataset sizes."
        )
    )
    parser.add_argument(
        "--ignore-in-train",
        type=int,
        default=[0],
        help=(
            "Whether Ignore coresponding dataset during training"
        ),nargs='+'
    )
    parser.add_argument(
        "--ignore-in-val",
        type=int,
        default=[0],
        help=(
            "Whether Ignore coresponding dataset during val"
        ),nargs='+'
    )
    parser
    parser.add_argument(
        "--extra-train-data",
        type=str,
        default=None,
        help="Path to file(s) with training data",
    )
    parser.add_argument(
        "--val-data",
        type=str,
        default=[None],
        nargs='+',
        help="Path to file(s) with validation data",
    )
    parser.add_argument(
        "--extra-val-data",
        type=str,
        default=None,
        help="Path to file(s) with validation data",
    )
    parser.add_argument(
        "--train-folder",
        type=str,
        default=None,
        help="Path to images of training data",
        nargs='+',
    )
    parser.add_argument(
        "--extra-train-folder",
        type=str,
        default=None,
        help="Path to images of training data",
    )
    parser.add_argument(
        "--val-folder",
        type=str,
        default=[None],
        nargs='+',
        help="Path to images of val data",
    )
    parser.add_argument(
        "--extra-val-folder",
        type=str,
        default=None,
        help="Path to images of val data",
    )
    parser.add_argument(
        "--save-path",
        type=str,
        default=None,
        help="Path to save checkpoints",
    )
    parser.add_argument(
        "--train-num-samples",
        type=int,
        default=None,
        help="Number of samples in dataset. Required for webdataset if not available in info file.",
    )
    parser.add_argument(
        "--val-num-samples",
        type=int,
        default=None,
        help="Number of samples in dataset. Useful for webdataset if not available in info file.",
    )
    parser.add_argument(
        "--dataset-type",
        choices=["webdataset", "csv", "synthetic", "auto", "preference", "rating", "regional", "ranking", "ImageReward", "HPD"],
        default="auto",
        help="Which type of dataset to process.", 
        nargs='+'
    )
    parser.add_argument(
        "--dataset-resampled",
        default=False,
        action="store_true",
        help="Whether to use sampling with replacement for webdataset shard selection."
    )
    parser.add_argument(
        "--csv-separator",
        type=str,
        default="\t",
        help="For csv-like datasets, which separator to use."
    )
    parser.add_argument(
        "--csv-img-key",
        type=str,
        default="filepath",
        help="For csv-like datasets, the name of the key for the image paths."
    )
    parser.add_argument(
        "--csv-caption-key",
        type=str,
        default="title",
        help="For csv-like datasets, the name of the key for the captions."
    )
    parser.add_argument(
        "--imagenet-val",
        type=str,
        default=None,
        help="Path to imagenet val set for conducting zero shot evaluation.",
    )
    parser.add_argument(
        "--imagenet-v2",
        type=str,
        default=None,
        help="Path to imagenet v2 for conducting zero shot evaluation.",
    )
    parser.add_argument(
        "--logs",
        type=str,
        default="./logs/",
        help="Where to store tensorboard logs. Use None to avoid storing logs.",
    )
    parser.add_argument(
        "--log-local",
        action="store_true",
        default=False,
        help="log files on local master, otherwise global master only.",
    )
    parser.add_argument(
        "--name",
        type=str,
        default=None,
        help="Optional identifier for the experiment when storing logs. Otherwise use current time.",
    )
    parser.add_argument(
        "--workers", type=int, default=1, help="Number of dataloader workers per GPU.", nargs='+'
    )
    parser.add_argument(
        "--batch-size", type=int, default=64, help="Batch size per GPU.", nargs='+'
    )
    parser.add_argument(
        "--val-batch-size", type=int, default=64, help="Batch size per GPU.", nargs='+'
    )
    parser.add_argument(
        "--iterations", type=int, default=None, help="Number of iterations to train for."
    )
    parser.add_argument(
        "--iters-cooldown", type=int, default=None
    )
    parser.add_argument("--lr", type=float, default=None, help="Learning rate.")
    parser.add_argument("--beta1", type=float, default=None, help="Adam beta 1.")
    parser.add_argument("--beta2", type=float, default=None, help="Adam beta 2.")
    parser.add_argument("--eps", type=float, default=None, help="Adam epsilon.")
    parser.add_argument("--wd", type=float, default=0.2, help="Weight decay.")
    parser.add_argument(
        "--warmup", type=int, default=10000, help="Number of steps to warmup for."
    )
    parser.add_argument(
        "--use-bn-sync",
        default=False,
        action="store_true",
        help="Whether to use batch norm sync.")
    parser.add_argument(
        "--skip-scheduler",
        action="store_true",
        default=False,
        help="Use this flag to skip the learning rate decay.",
    )
    parser.add_argument(
        "--lr-scheduler",
        type=str,
        default='cosine',
        help="LR scheduler. One of: 'cosine', 'const' (constant), 'const-cooldown' (constant w/ cooldown). Default: cosine",
    )
    parser.add_argument(
        "--lr-cooldown-end", type=float, default=0.0,
        help="End learning rate for cooldown schedule. Default: 0"
    )
    parser.add_argument(
        "--lr-cooldown-power", type=float, default=1.0,
        help="Power for polynomial cooldown schedule. Default: 1.0 (linear decay)"
    )
    parser.add_argument(
        "--save-most-recent",
        action="store_true",
        default=False,
        help="Always save the most recent model trained to epoch_latest.pt.",
    )
    parser.add_argument(
        "--zeroshot-frequency", type=int, default=2, help="How often to run zero shot."
    )
    parser.add_argument(
        "--resume",
        default=None,
        type=str,
        help="path to latest checkpoint (default: none)",
    )
    parser.add_argument(
        "--precision",
        choices=["amp", "amp_bf16", "amp_bfloat16", "bf16", "fp16", "fp32"],
        default="amp",
        help="Floating point precision."
    )
    parser.add_argument(
        "--model",
        type=str,
        default="RN50",
        help="Name of the vision backbone to use.",
    )
    parser.add_argument(
        "--pretrained",
        default='',
        type=str,
        help="Use a pretrained CLIP model weights with the specified tag or file path.",
    )
    parser.add_argument(
        "--pretrained-image",
        default=False,
        action='store_true',
        help="Load imagenet pretrained weights for image tower backbone if available.",
    )
    parser.add_argument(
        "--lock-image",
        default=False,
        action='store_true',
        help="Lock full image tower by disabling gradients.",
    )
    parser.add_argument(
        "--lock-image-unlocked-groups",
        type=int,
        default=0,
        help="Leave last n image tower layer groups unlocked.",
    )
    parser.add_argument(
        "--lock-image-freeze-bn-stats",
        default=False,
        action='store_true',
        help="Freeze BatchNorm running stats in image tower for any locked layers.",
    )
    parser.add_argument(
        '--image-mean', type=float, nargs='+', default=None, metavar='MEAN',
        help='Override default image mean value of dataset')
    parser.add_argument(
        '--image-std', type=float, nargs='+', default=None, metavar='STD',
        help='Override default image std deviation of of dataset')
    parser.add_argument('--aug-cfg', nargs='*', default={}, action=ParseKwargs)
    parser.add_argument(
        '--light-augmentation', action='store_true',
        help='')
    parser.add_argument(
        "--grad-checkpointing",
        default=False,
        action='store_true',
        help="Enable gradient checkpointing.",
    )
    parser.add_argument(
        "--local-loss",
        default=False,
        action="store_true",
        help="calculate loss w/ local features @ global (instead of realizing full global @ global matrix)"
    )
    parser.add_argument(
        "--gather-with-grad",
        default=False,
        action="store_true",
        help="enable full distributed gradient for feature gather"
    )
    parser.add_argument(
        '--force-image-size', type=int, nargs='+', default=None,
        help='Override default image size'
    )
    parser.add_argument(
        "--force-quick-gelu",
        default=False,
        action='store_true',
        help="Force use of QuickGELU activation for non-OpenAI transformer models.",
    )
    parser.add_argument(
        "--force-patch-dropout",
        default=None,
        type=float,
        help="Override the patch dropout during training, for fine tuning with no dropout near the end as in the paper",
    )
    parser.add_argument(
        "--force-custom-text",
        default=False,
        action='store_true',
        help="Force use of CustomTextCLIP model (separate text-tower).",
    )
    parser.add_argument(
        "--torchscript",
        default=False,
        action='store_true',
        help="torch.jit.script the model, also uses jit version of OpenAI models if pretrained=='openai'",
    )
    parser.add_argument(
        "--trace",
        default=False,
        action='store_true',
        help="torch.jit.trace the model for inference / eval only",
    )
    parser.add_argument(
        "--accum-freq", type=int, default=1, help="Update the model every --acum-freq steps."
    )
    # arguments for distributed training
    parser.add_argument(
        "--dist-url",
        default="env://",
        type=str,
        help="url used to set up distributed training",
    )
    parser.add_argument(
        "--dist-backend", default="nccl", type=str, help="distributed backend"
    )
    parser.add_argument(
        "--report-to",
        default='',
        type=str,
        help="Options are ['tensorboard']"
    )
    parser.add_argument(
        "--debug",
        default=False,
        action="store_true",
        help="If true, more information is logged."
    )
    parser.add_argument(
        "--copy-codebase",
        default=False,
        action="store_true",
        help="If true, we copy the entire base on the log directory, and execute from there."
    )
    parser.add_argument(
        "--horovod",
        default=False,
        action="store_true",
        help="Use horovod for distributed training."
    )
    parser.add_argument(
        "--ddp-static-graph",
        default=False,
        action='store_true',
        help="Enable static graph optimization for DDP in PyTorch >= 1.11.",
    )
    parser.add_argument(
        "--no-set-device-rank",
        default=False,
        action="store_true",
        help="Don't set device index from local rank (when CUDA_VISIBLE_DEVICES restricted to one per proc)."
    )
    parser.add_argument(
        "--seed", type=int, default=16, help="Default random seed."
    )
    parser.add_argument(
        "--grad-clip-norm", type=float, default=None, help="Gradient clip."
    )
    parser.add_argument(
        "--lock-text",
        default=False,
        action='store_true',
        help="Lock full text tower by disabling gradients.",
    )
    parser.add_argument(
        "--lock-text-unlocked-layers",
        type=int,
        default=0,
        help="Leave last n image tower layer groups unlocked.",
    )
    parser.add_argument(
        "--margin",
        type=float,
        default=1.0,
        help="hyper parameter for margin loss in ranking",
    )
    parser.add_argument(
        "--lock-text-freeze-layer-norm",
        default=False,
        action='store_true',
        help="Freeze BatchNorm running stats in image tower for any locked layers.",
    )
    parser.add_argument(
        "--log-every-n-steps",
        type=int,
        default=10,
        help="Log every n steps to tensorboard/console.",
    )
    parser.add_argument(
        "--coca-caption-loss-weight",
        type=float,
        default=2.0,
        help="Weight assigned to caption loss in CoCa."
    )
    parser.add_argument(
        "--coca-contrastive-loss-weight",
        type=float,
        default=1.0,
        help="Weight assigned to contrastive loss when training CoCa."
    )
    parser.add_argument(
        "--remote-sync",
        type=str,
        default=None,
        help="Optinoally sync with a remote path specified by this arg",
    )
    parser.add_argument(
        "--remote-sync-frequency",
        type=int,
        default=300,
        help="How frequently to sync to a remote directly if --remote-sync is not None.",
    )
    parser.add_argument(
        "--remote-sync-protocol",
        choices=["s3", "fsspec"],
        default="s3",
        help="How to do the remote sync backup if --remote-sync is not None.",
    )
    parser.add_argument(
        "--delete-previous-checkpoint",
        default=False,
        action="store_true",
        help="If true, delete previous checkpoint after storing a new one."
    )
    parser.add_argument(
        "--distill-model",
        default=None,
        help='Which model arch to distill from, if any.'
    )
    parser.add_argument(
        "--distill-pretrained",
        default=None,
        help='Which pre-trained weights to distill from, if any.'
    )
    args = parser.parse_args(args)

    # If some params are not passed, we use the default values based on model name.
    default_params = get_default_params(args.model)
    for name, val in default_params.items():
        if getattr(args, name) is None:
            setattr(args, name, val)

    return args