Spaces:
Runtime error
Runtime error
File size: 17,907 Bytes
54199b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import glob
import json
import logging
import os
import re
import subprocess
import sys
import random
from datetime import datetime
import numpy as np
import torch
from torch import optim
from torch.cuda.amp import GradScaler
try:
import torch.utils.tensorboard as tensorboard
except ImportError:
tensorboard = None
try:
import horovod.torch as hvd
except ImportError:
hvd = None
from .open_clip import create_model_and_transforms, trace_model, get_tokenizer
from .data import get_data, PreferenceDataset, RegionDataset, RankingDataset, ImageRewardDataset, HPDDataset
from .distributed import is_master, init_distributed_device, broadcast_object, barrier
from .logger import setup_logging
from .params import parse_args
from .scheduler import cosine_lr, const_lr, const_lr_cooldown
from .train import evaluate_ranking, train_iters, evaluate_preference, evaluate_regional, unwrap_model
from .file_utils import pt_load, save_ckpt, start_sync_process, remote_sync
LATEST_CHECKPOINT_NAME = "latest.pt"
def random_seed(seed=42, rank=0):
torch.manual_seed(seed + rank)
np.random.seed(seed + rank)
random.seed(seed + rank)
def natural_key(string_):
"""See http://www.codinghorror.com/blog/archives/001018.html"""
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]
def get_latest_checkpoint(path: str, remote : bool):
# as writen, this glob recurses, so can pick up checkpoints across multiple sub-folders
if remote:
result = subprocess.run(["aws", "s3", "ls", path + "/"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
print(result)
if result.returncode == 1:
return None
checkpoints = [os.path.join(path, x.split(' ')[-1]) for x in result.stdout.decode().split('\n')[:-1]]
else:
checkpoints = glob.glob(path + '**/*.pt', recursive=True)
if checkpoints:
checkpoints = sorted(checkpoints, key=natural_key)
return checkpoints[-1]
return None
def do_eval(data, model, args, out_dict=None):
if out_dict is None:
out_dict = {}
for d in data['val']:
if isinstance(d.dataloader.dataset, PreferenceDataset):
out_dict['pref_acc'] = evaluate_preference(model, d, args)
if isinstance(d.dataloader.dataset, RegionDataset):
out_dict['iou'] = evaluate_regional(model, d, args)
if isinstance(d.dataloader.dataset, RankingDataset):
out_dict['ranking_acc'] = evaluate_ranking(model, d, args)
if isinstance(d.dataloader.dataset, ImageRewardDataset):
out_dict['ImageReward_acc'] = evaluate_ranking(model, d, args)
return out_dict
def main(rank, args):
if rank is not None:
assert int(os.environ['WORLD_SIZE']) <= 8, "currently only support single node training"
os.environ['LOCAL_RANK'] = str(rank)
os.environ['RANK'] = str(rank)
if torch.cuda.is_available():
# This enables tf32 on Ampere GPUs which is only 8% slower than
# float16 and almost as accurate as float32
# This was a default in pytorch until 1.12
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
# fully initialize distributed device environment
device = init_distributed_device(args)
# get the name of the experiments
if args.name is None:
# sanitize model name for filesystem / uri use, easier if we don't use / in name as a rule?
model_name_safe = args.model.replace('/', '-')
date_str = datetime.now().strftime("%Y_%m_%d-%H_%M_%S")
if args.distributed:
# sync date_str from master to all ranks
date_str = broadcast_object(args, date_str)
args.name = '-'.join([
date_str,
f"model_{model_name_safe}",
f"lr_{args.lr}",
f"b_{args.batch_size}",
f"j_{args.workers}",
f"p_{args.precision}",
])
resume_latest = args.resume == 'latest'
log_base_path = os.path.join(args.logs, args.name)
args.log_path = None
if is_master(args, local=args.log_local):
os.makedirs(log_base_path, exist_ok=True)
log_filename = f'out-{args.rank}' if args.log_local else 'out.log'
args.log_path = os.path.join(log_base_path, log_filename)
if os.path.exists(args.log_path) and not resume_latest:
print(
"Error. Experiment already exists. Use --name {} to specify a new experiment."
)
return -1
# Setup text logger
args.log_level = logging.DEBUG if args.debug else logging.INFO
setup_logging(args.log_path, args.log_level)
# Setup tensorboard, checkpoint logging
args.tensorboard = 'tensorboard' in args.report_to or 'all' in args.report_to
args.checkpoint_path = os.path.join(log_base_path, "checkpoints")
if is_master(args):
args.tensorboard_path = os.path.join(log_base_path, "tensorboard") if args.tensorboard else ''
for dirname in [args.tensorboard_path, args.checkpoint_path]:
if dirname:
os.makedirs(dirname, exist_ok=True)
else:
args.tensorboard_path = ''
if resume_latest:
resume_from = None
checkpoint_path = args.checkpoint_path
# If using remote_sync, need to check the remote instead of the local checkpoints folder.
if args.remote_sync is not None:
checkpoint_path = os.path.join(args.remote_sync, args.name, "checkpoints")
if args.save_most_recent:
print('Error. Cannot use save-most-recent with remote_sync and resume latest.')
return -1
if args.remote_sync_protocol != 's3':
print('Error. Sync protocol not supported when using resume latest.')
return -1
if is_master(args):
# Checking for existing checkpoint via master rank only. It is possible for
# different rank processes to see different files if a shared file-system is under
# stress, however it's very difficult to fully work around such situations.
if args.save_most_recent:
# if --save-most-recent flag is set, look for latest at a fixed filename
resume_from = os.path.join(checkpoint_path, LATEST_CHECKPOINT_NAME)
if not os.path.exists(resume_from):
# If no latest checkpoint has been saved yet, don't try to resume
resume_from = None
else:
# otherwise, list checkpoint dir contents and pick the newest checkpoint
resume_from = get_latest_checkpoint(checkpoint_path, remote=args.remote_sync is not None)
if resume_from:
logging.info(f'Found latest resume checkpoint at {resume_from}.')
else:
logging.info(f'No latest resume checkpoint found in {checkpoint_path}.')
if args.distributed:
# sync found checkpoint path to all ranks
resume_from = broadcast_object(args, resume_from)
args.resume = resume_from
# start the sync proces if remote-sync is not None
remote_sync_process = None
if is_master(args) and args.remote_sync is not None:
# first make sure it works
result = remote_sync(
os.path.join(args.logs, args.name),
os.path.join(args.remote_sync, args.name),
args.remote_sync_protocol
)
if result:
logging.info('remote sync successful.')
else:
logging.info('Error: remote sync failed. Exiting.')
return -1
# if all looks good, start a process to do this every args.remote_sync_frequency seconds
remote_sync_process = start_sync_process(
args.remote_sync_frequency,
os.path.join(args.logs, args.name),
os.path.join(args.remote_sync, args.name),
args.remote_sync_protocol
)
remote_sync_process.start()
if args.precision == 'fp16':
logging.warning(
'It is recommended to use AMP mixed-precision instead of FP16. '
'FP16 support needs further verification and tuning, especially for train.')
if args.horovod:
logging.info(
f'Running in horovod mode with multiple processes / nodes. Device: {args.device}.'
f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.')
elif args.distributed:
logging.info(
f'Running in distributed mode with multiple processes. Device: {args.device}.'
f'Process (global: {args.rank}, local {args.local_rank}), total {args.world_size}.')
else:
logging.info(f'Running with a single process. Device {args.device}.')
dist_model = None
args.distill = args.distill_model is not None and args.distill_pretrained is not None
if args.distill:
#FIXME: support distillation with grad accum.
assert args.accum_freq == 1
#FIXME: support distillation with coca.
assert 'coca' not in args.model.lower()
if isinstance(args.force_image_size, (tuple, list)) and len(args.force_image_size) == 1:
# arg is nargs, single (square) image size list -> int
args.force_image_size = args.force_image_size[0]
random_seed(args.seed, 0)
model, preprocess_train, preprocess_val = create_model_and_transforms(
args.model,
args.pretrained,
precision=args.precision,
device=device,
jit=args.torchscript,
force_quick_gelu=args.force_quick_gelu,
force_custom_text=args.force_custom_text,
force_patch_dropout=args.force_patch_dropout,
force_image_size=args.force_image_size,
pretrained_image=args.pretrained_image,
image_mean=args.image_mean,
image_std=args.image_std,
light_augmentation=args.light_augmentation,
aug_cfg=args.aug_cfg,
output_dict=True,
with_score_predictor='rating' in args.dataset_type or args.no_text_condition,
with_region_predictor='regional' in args.dataset_type
)
if args.distill:
# FIXME: currenlty assumes the model your distilling from has the same tokenizer & transforms.
dist_model, _, _ = create_model_and_transforms(
args.distill_model,
args.distill_pretrained,
device=device,
precision=args.precision,
output_dict=True,
)
random_seed(args.seed, args.rank)
if args.trace:
model = trace_model(model, batch_size=args.batch_size, device=device)
if args.lock_image:
# lock image tower as per LiT - https://arxiv.org/abs/2111.07991
model.lock_image_tower(
unlocked_groups=args.lock_image_unlocked_groups,
freeze_bn_stats=args.lock_image_freeze_bn_stats)
if args.lock_text:
model.lock_text_tower(
unlocked_layers=args.lock_text_unlocked_layers,
freeze_layer_norm=args.lock_text_freeze_layer_norm)
if args.grad_checkpointing:
model.set_grad_checkpointing()
if is_master(args):
logging.info("Model:")
logging.info(f"{str(model)}")
logging.info("Params:")
params_file = os.path.join(args.logs, args.name, "params.txt")
with open(params_file, "w") as f:
for name in sorted(vars(args)):
val = getattr(args, name)
logging.info(f" {name}: {val}")
f.write(f"{name}: {val}\n")
if args.distributed and not args.horovod:
if args.use_bn_sync:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
ddp_args = {}
if args.ddp_static_graph:
# this doesn't exist in older PyTorch, arg only added if enabled
ddp_args['static_graph'] = True
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device], find_unused_parameters=True,**ddp_args)
if args.distill:
dist_model = torch.nn.parallel.DistributedDataParallel(dist_model, device_ids=[device], **ddp_args)
# create optimizer and scaler
optimizer = None
scaler = None
if args.train_data or args.dataset_type == "synthetic":
assert not args.trace, 'Cannot train with traced model'
exclude = lambda n, p: p.ndim < 2 or "bn" in n or "ln" in n or "bias" in n or 'logit_scale' in n
include = lambda n, p: not exclude(n, p)
named_parameters = list(model.named_parameters())
gain_or_bias_params = [p for n, p in named_parameters if exclude(n, p) and p.requires_grad]
rest_params = [p for n, p in named_parameters if include(n, p) and p.requires_grad]
optimizer = optim.AdamW(
[
{"params": gain_or_bias_params, "weight_decay": 0.},
{"params": rest_params, "weight_decay": args.wd},
],
lr=args.lr,
betas=(args.beta1, args.beta2),
eps=args.eps,
)
if args.horovod:
optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters())
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
scaler = GradScaler() if args.precision == "amp" else None
# optionally resume from a checkpoint
start_iterations = 0
if args.resume is not None:
checkpoint = pt_load(args.resume, map_location='cpu')
if 'iterations' in checkpoint:
# resuming a train checkpoint w/ epoch and optimizer state
start_iterations = checkpoint["iterations"]
sd = checkpoint["state_dict"]
if not args.distributed and next(iter(sd.items()))[0].startswith('module'):
sd = {k[len('module.'):]: v for k, v in sd.items()}
model.load_state_dict(sd)
if optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer"])
if scaler is not None and 'scaler' in checkpoint:
scaler.load_state_dict(checkpoint['scaler'])
logging.info(f"=> resuming checkpoint '{args.resume}' (iterations {start_iterations})")
else:
# loading a bare (model only) checkpoint for fine-tune or evaluation
model.load_state_dict(checkpoint)
logging.info(f"=> loaded checkpoint '{args.resume}' (iterations {start_iterations})")
# initialize datasets
data = get_data(args, (preprocess_train, preprocess_val), epoch=0, tokenizer=get_tokenizer(args.model))
assert len(data), 'At least one train or eval dataset must be specified.'
# create scheduler if train
scheduler = None
if 'train' in data and optimizer is not None :
total_steps = (args.iterations // args.world_size) * args.world_size
if args.lr_scheduler == "cosine":
scheduler = cosine_lr(optimizer, args.lr, args.warmup, total_steps)
elif args.lr_scheduler == "const":
scheduler = const_lr(optimizer, args.lr, args.warmup, total_steps)
elif args.lr_scheduler == "const-cooldown":
assert args.epochs_cooldown is not None
cooldown_steps = (args.iters_cooldown // args.world_size) * args.world_size
scheduler = const_lr_cooldown(
optimizer, args.lr, args.warmup, total_steps,
cooldown_steps, args.lr_cooldown_power, args.lr_cooldown_end)
else:
logging.error(
f'Unknown scheduler, {args.lr_scheduler}. Available options are: cosine, const, const-cooldown.')
exit(1)
# determine if this worker should save logs and checkpoints. only do so if it is rank == 0
args.save_logs = args.logs and args.logs.lower() != 'none' and is_master(args)
writer = None
if args.save_logs and args.tensorboard:
assert tensorboard is not None, "Please install tensorboard."
writer = tensorboard.SummaryWriter(args.tensorboard_path)
out_dict = {}
if 'train' not in data:
out_dict = do_eval(data, model, args, out_dict=out_dict)
return out_dict
iterations = args.iterations - start_iterations
if is_master(args):
logging.info(f'Start training for {iterations} iterations.'
f'with sample ratio {args.train_data_sample_ratio}'
)
# train first args.start_eval_iters to stablize model
train_iters(model, data, iterations, optimizer, scaler, scheduler, dist_model, args, tb_writer=writer)
barrier(args)
# final eval after training
if 'val' in data:
out_dict = do_eval(data, model, args, out_dict=out_dict)
if is_master(args):
logging.info(
f"finished iterations [ {iterations} / {iterations} ] "
f"rank acc {out_dict['ranking_acc']} "
)
if args.save_path is not None:
save_ckpt(args, model, scaler, optimizer)
barrier(args)
# run a final sync.
if remote_sync_process is not None:
logging.info('Final remote sync.')
remote_sync_process.terminate()
result = remote_sync(
os.path.join(args.logs, args.name),
os.path.join(args.remote_sync, args.name),
args.remote_sync_protocol
)
if result:
logging.info('Final remote sync successful.')
else:
logging.info('Final remote sync failed.')
if is_master(args):
with open("result.json", "w") as f:
json.dump(out_dict, f)
return out_dict
if __name__ == "__main__":
args = parse_args(sys.argv[1:])
main(None, args)
|