File size: 43,214 Bytes
54199b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
from __future__ import annotations
import ast
import copy
from curses import meta
from email.mime import image
import json
import logging
import math
import os
import random
import sys
import time
import io
import itertools
import braceexpand
from dataclasses import dataclass
from multiprocessing import Value
import pyarrow as pa

import numpy as np
import pandas as pd
import functools
import torch
import torchvision.datasets as datasets
import torchvision.transforms.functional as TF
import torch.distributed as dist
import webdataset as wds
from PIL import Image
from torchvision.transforms import InterpolationMode
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler, IterableDataset, get_worker_info
from torch.utils.data.distributed import DistributedSampler, Sampler
from webdataset.filters import _shuffle
from webdataset.tariterators import base_plus_ext, url_opener, tar_file_expander, valid_sample

from open_clip import transform

try:
    import horovod.torch as hvd
except ImportError:
    hvd = None

try:
    from petrel_client.client import Client
except ImportError as E:
    "petrel_client.client cannot be imported"
    pass

def pil_loader(img_str):
    buff = io.BytesIO(img_str)
    return Image.open(buff).convert("RGB")

@functools.lru_cache()
def _get_global_gloo_group():
    """
    Return a process group based on gloo backend, containing all the ranks
    The result is cached.
    """
    if dist.get_backend() == "nccl":
        return dist.new_group(backend="gloo")
    else:
        return dist.group.WORLD

def all_gather(data, group=None):
    """
    Run all_gather on arbitrary picklable data (not necessarily tensors).

    Args:
        data: any picklable object
        group: a torch process group. By default, will use a group which
            contains all ranks on gloo backend.

    Returns:
        list[data]: list of data gathered from each rank
    """
    if dist.get_world_size() == 1:
        return [data]
    if group is None:
        group = _get_global_gloo_group()  # use CPU group by default, to reduce GPU RAM usage.
    world_size = dist.get_world_size(group)
    if world_size == 1:
        return [data]

    output = [None for _ in range(world_size)]
    dist.all_gather_object(output, data, group=group)
    return output

def shared_random_seed():
    """
    Returns:
        int: a random number that is the same across all workers.
        If workers need a shared RNG, they can use this shared seed to
        create one.

    All workers must call this function, otherwise it will deadlock.
    """
    ints = np.random.randint(2**31)
    all_ints = all_gather(ints)
    return all_ints[0]

class TrainingSampler(Sampler):
    """
    In training, we only care about the "infinite stream" of training data.
    So this sampler produces an infinite stream of indices and
    all workers cooperate to correctly shuffle the indices and sample different indices.

    The samplers in each worker effectively produces `indices[worker_id::num_workers]`
    where `indices` is an infinite stream of indices consisting of
    `shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True)
    or `range(size) + range(size) + ...` (if shuffle is False)
    """
    
    def __init__(self, dataset, num_replicas=None, rank=None, local_rank=None, local_size=None, shuffle=True, seed = None):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) -1 
        self.total_size = len(dataset)
        self.shuffle = shuffle
        # self.dataset_repeat = dataset_repeat
        if seed is None:
            seed = shared_random_seed()
        self.seed = int(seed)

    def __len__(self):
        return self.num_samples 
    
    def __iter__(self):
        start = self.rank
        yield from itertools.islice(self._infinite_indices(), start, None, self.num_replicas)

    def _infinite_indices(self):
        g = torch.Generator()
        g.manual_seed(self.seed)
        while True:
            if self.shuffle:
                yield from torch.randperm(self.total_size, generator=g).tolist()
            else:
                yield from torch.arange(self.total_size).tolist()

class TCSLoader(object):

    def __init__(self, time_limit=3):
        conf_path = os.environ.get('CEPH_CONFIG', './petreloss.config')
        self.client = Client(conf_path)
        self.time_limit = time_limit

    def __call__(self, fn):
        try:
            img_value_str = self.client.get(fn)
            img = pil_loader(img_value_str)
            return img
        except Exception as e:
            print('Read image failed ({})'.format(fn))
            raise e
        

class CsvDataset(Dataset):
    def __init__(self, input_filename, transforms, img_key, caption_key, sep="\t", tokenizer=None):
        logging.debug(f'Loading csv data from {input_filename}.')
        df = pd.read_csv(input_filename, sep=sep)

        self.images = df[img_key].tolist()
        self.captions = df[caption_key].tolist()
        self.transforms = transforms
        logging.debug('Done loading data.')

        self.tokenize = tokenizer

    def __len__(self):
        return len(self.captions)

    def __getitem__(self, idx):
        images = self.transforms(Image.open(str(self.images[idx])))
        texts = self.tokenize([str(self.captions[idx])])[0]
        return images, texts


class SharedEpoch:
    def __init__(self, epoch: int = 0):
        self.shared_epoch = Value('i', epoch)

    def set_value(self, epoch):
        self.shared_epoch.value = epoch

    def get_value(self):
        return self.shared_epoch.value


@dataclass
class DataInfo:
    dataloader: DataLoader
    data_type: str
    sampler: DistributedSampler = None
    shared_epoch: SharedEpoch = None

    def set_epoch(self, epoch):
        if self.shared_epoch is not None:
            self.shared_epoch.set_value(epoch)
        if self.sampler is not None and isinstance(self.sampler, DistributedSampler):
            self.sampler.set_epoch(epoch)


def expand_urls(urls, weights=None):
    if weights is None:
        expanded_urls = wds.shardlists.expand_urls(urls)
        return expanded_urls, None
    if isinstance(urls, str):
        urllist = urls.split("::")
        weights = weights.split('::')
        assert len(weights) == len(urllist), f"Expected the number of data components ({len(urllist)}) and weights({len(weights)}) to match."
        weights = [float(weight) for weight in weights]
        all_urls, all_weights = [], []
        for url, weight in zip(urllist, weights):
            expanded_url = list(braceexpand.braceexpand(url))
            expanded_weights = [weight for _ in expanded_url]
            all_urls.extend(expanded_url)
            all_weights.extend(expanded_weights)
        return all_urls, all_weights
    else:
        all_urls = list(urls)
        return all_urls, weights


def get_dataset_size(shards):
    shards_list, _ = expand_urls(shards)
    dir_path = os.path.dirname(shards_list[0])
    sizes_filename = os.path.join(dir_path, 'sizes.json')
    len_filename = os.path.join(dir_path, '__len__')
    if os.path.exists(sizes_filename):
        sizes = json.load(open(sizes_filename, 'r'))
        total_size = sum([int(sizes[os.path.basename(shard)]) for shard in shards_list])
    elif os.path.exists(len_filename):
        # FIXME this used to be eval(open(...)) but that seemed rather unsafe
        total_size = ast.literal_eval(open(len_filename, 'r').read())
    else:
        total_size = None  # num samples undefined
        # some common dataset sizes (at time of authors last download)
        # CC3M (train): 2905954
        # CC12M: 10968539
        # LAION-400M: 407332084
        # LAION-2B (english): 2170337258
    num_shards = len(shards_list)
    return total_size, num_shards


def get_imagenet(args, preprocess_fns, split):
    assert split in ["train", "val", "v2"]
    is_train = split == "train"
    preprocess_train, preprocess_val = preprocess_fns

    if split == "v2":
        from imagenetv2_pytorch import ImageNetV2Dataset
        dataset = ImageNetV2Dataset(location=args.imagenet_v2, transform=preprocess_val)
    else:
        if is_train:
            data_path = args.imagenet_train
            preprocess_fn = preprocess_train
        else:
            data_path = args.imagenet_val
            preprocess_fn = preprocess_val
        assert data_path

        dataset = datasets.ImageFolder(data_path, transform=preprocess_fn)

    if is_train:
        idxs = np.zeros(len(dataset.targets))
        target_array = np.array(dataset.targets)
        k = 50
        for c in range(1000):
            m = target_array == c
            n = len(idxs[m])
            arr = np.zeros(n)
            arr[:k] = 1
            np.random.shuffle(arr)
            idxs[m] = arr

        idxs = idxs.astype('int')
        sampler = SubsetRandomSampler(np.where(idxs)[0])
    else:
        sampler = None

    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.batch_size,
        num_workers=args.workers,
        sampler=sampler,
    )

    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='classification')


def count_samples(dataloader):
    os.environ["WDS_EPOCH"] = "0"
    n_elements, n_batches = 0, 0
    for images, texts in dataloader:
        n_batches += 1
        n_elements += len(images)
        assert len(images) == len(texts)
    return n_elements, n_batches


def filter_no_caption_or_no_image(sample):
    has_caption = ('txt' in sample)
    has_image = ('png' in sample or 'jpg' in sample or 'jpeg' in sample or 'webp' in sample)
    return has_caption and has_image


def log_and_continue(exn):
    """Call in an exception handler to ignore any exception, issue a warning, and continue."""
    logging.warning(f'Handling webdataset error ({repr(exn)}). Ignoring.')
    return True


def group_by_keys_nothrow(data, keys=base_plus_ext, lcase=True, suffixes=None, handler=None):
    """Return function over iterator that groups key, value pairs into samples.

    :param keys: function that splits the key into key and extension (base_plus_ext)
    :param lcase: convert suffixes to lower case (Default value = True)
    """
    current_sample = None
    for filesample in data:
        assert isinstance(filesample, dict)
        fname, value = filesample["fname"], filesample["data"]
        prefix, suffix = keys(fname)
        if prefix is None:
            continue
        if lcase:
            suffix = suffix.lower()
        # FIXME webdataset version throws if suffix in current_sample, but we have a potential for
        #  this happening in the current LAION400m dataset if a tar ends with same prefix as the next
        #  begins, rare, but can happen since prefix aren't unique across tar files in that dataset
        if current_sample is None or prefix != current_sample["__key__"] or suffix in current_sample:
            if valid_sample(current_sample):
                yield current_sample
            current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
        if suffixes is None or suffix in suffixes:
            current_sample[suffix] = value
    if valid_sample(current_sample):
        yield current_sample


def tarfile_to_samples_nothrow(src, handler=log_and_continue):
    # NOTE this is a re-impl of the webdataset impl with group_by_keys that doesn't throw
    streams = url_opener(src, handler=handler)
    files = tar_file_expander(streams, handler=handler)
    samples = group_by_keys_nothrow(files, handler=handler)
    return samples


def pytorch_worker_seed(increment=0):
    """get dataloader worker seed from pytorch"""
    worker_info = get_worker_info()
    if worker_info is not None:
        # favour using the seed already created for pytorch dataloader workers if it exists
        seed = worker_info.seed
        if increment:
            # space out seed increments so they can't overlap across workers in different iterations
            seed += increment * max(1, worker_info.num_workers)
        return seed
    # fallback to wds rank based seed
    return wds.utils.pytorch_worker_seed()


_SHARD_SHUFFLE_SIZE = 2000
_SHARD_SHUFFLE_INITIAL = 500
_SAMPLE_SHUFFLE_SIZE = 5000
_SAMPLE_SHUFFLE_INITIAL = 1000


class detshuffle2(wds.PipelineStage):
    def __init__(
            self,
            bufsize=1000,
            initial=100,
            seed=0,
            epoch=-1,
    ):
        self.bufsize = bufsize
        self.initial = initial
        self.seed = seed
        self.epoch = epoch

    def run(self, src):
        if isinstance(self.epoch, SharedEpoch):
            epoch = self.epoch.get_value()
        else:
            # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
            # situation as different workers may wrap at different times (or not at all).
            self.epoch += 1
            epoch = self.epoch
        rng = random.Random()
        if self.seed < 0:
            # If seed is negative, we use the worker's seed, this will be different across all nodes/workers
            seed = pytorch_worker_seed(epoch)
        else:
            # This seed to be deterministic AND the same across all nodes/workers in each epoch
            seed = self.seed + epoch
        rng.seed(seed)
        return _shuffle(src, self.bufsize, self.initial, rng)


class ResampledShards2(IterableDataset):
    """An iterable dataset yielding a list of urls."""

    def __init__(
        self,
        urls,
        weights=None,
        nshards=sys.maxsize,
        worker_seed=None,
        deterministic=False,
        epoch=-1,
    ):
        """Sample shards from the shard list with replacement.

        :param urls: a list of URLs as a Python list or brace notation string
        """
        super().__init__()
        urls, weights = expand_urls(urls, weights)
        self.urls = urls
        self.weights = weights
        if self.weights is not None:
            assert len(self.urls) == len(self.weights), f"Number of urls {len(self.urls)} and weights {len(self.weights)} should match."
        assert isinstance(self.urls[0], str)
        self.nshards = nshards
        self.rng = random.Random()
        self.worker_seed = worker_seed
        self.deterministic = deterministic
        self.epoch = epoch

    def __iter__(self):
        """Return an iterator over the shards."""
        if isinstance(self.epoch, SharedEpoch):
            epoch = self.epoch.get_value()
        else:
            # NOTE: this is epoch tracking is problematic in a multiprocess (dataloader workers or train)
            # situation as different workers may wrap at different times (or not at all).
            self.epoch += 1
            epoch = self.epoch
        if self.deterministic:
            # reset seed w/ epoch if deterministic
            if self.worker_seed is None:
                # pytorch worker seed should be deterministic due to being init by arg.seed + rank + worker id
                seed = pytorch_worker_seed(epoch)
            else:
                seed = self.worker_seed() + epoch
            self.rng.seed(seed)
        for _ in range(self.nshards):
            if self.weights is None:
                yield dict(url=self.rng.choice(self.urls))
            else:
                yield dict(url=self.rng.choices(self.urls, weights=self.weights, k=1)[0])


def get_wds_dataset(args, preprocess_img, is_train, epoch=0, floor=False, tokenizer=None):
    input_shards = args.train_data if is_train else args.val_data
    assert input_shards is not None
    resampled = getattr(args, 'dataset_resampled', False) and is_train

    num_samples, num_shards = get_dataset_size(input_shards)
    if not num_samples:
        if is_train:
            num_samples = args.train_num_samples
            if not num_samples:
                raise RuntimeError(
                    'Currently, number of dataset samples must be specified for training dataset. '
                    'Please specify via `--train-num-samples` if no dataset length info present.')
        else:
            num_samples = args.val_num_samples or 0  # eval will just exhaust the iterator if not specified

    shared_epoch = SharedEpoch(epoch=epoch)  # create a shared epoch store to sync epoch to dataloader worker proc
    
    if resampled:
        pipeline = [ResampledShards2(input_shards, weights=args.train_data_upsampling_factors, deterministic=True, epoch=shared_epoch)]
    else:
        assert args.train_data_upsampling_factors is None, "--train_data_upsampling_factors is only supported when sampling with replacement (together with --dataset-resampled)."
        pipeline = [wds.SimpleShardList(input_shards)]

    # at this point we have an iterator over all the shards
    if is_train:
        if not resampled:
            pipeline.extend([
                detshuffle2(
                    bufsize=_SHARD_SHUFFLE_SIZE,
                    initial=_SHARD_SHUFFLE_INITIAL,
                    seed=args.seed,
                    epoch=shared_epoch,
                ),
                wds.split_by_node,
                wds.split_by_worker,
            ])
        pipeline.extend([
            # at this point, we have an iterator over the shards assigned to each worker at each node
            tarfile_to_samples_nothrow,  # wds.tarfile_to_samples(handler=log_and_continue),
            wds.shuffle(
                bufsize=_SAMPLE_SHUFFLE_SIZE,
                initial=_SAMPLE_SHUFFLE_INITIAL,
            ),
        ])
    else:
        pipeline.extend([
            wds.split_by_worker,
            # at this point, we have an iterator over the shards assigned to each worker
            wds.tarfile_to_samples(handler=log_and_continue),
        ])
    pipeline.extend([
        wds.select(filter_no_caption_or_no_image),
        wds.decode("pilrgb", handler=log_and_continue),
        wds.rename(image="jpg;png;jpeg;webp", text="txt"),
        wds.map_dict(image=preprocess_img, text=lambda text: tokenizer(text)[0]),
        wds.to_tuple("image", "text"),
        wds.batched(args.batch_size, partial=not is_train)
    ])

    dataset = wds.DataPipeline(*pipeline)

    if is_train:
        if not resampled:
            assert num_shards >= args.workers * args.world_size, 'number of shards must be >= total workers'
        # roll over and repeat a few samples to get same number of full batches on each node
        round_fn = math.floor if floor else math.ceil
        global_batch_size = args.batch_size * args.world_size
        num_batches = round_fn(num_samples / global_batch_size)
        num_workers = max(1, args.workers)
        num_worker_batches = round_fn(num_batches / num_workers)  # per dataloader worker
        num_batches = num_worker_batches * num_workers
        num_samples = num_batches * global_batch_size
        dataset = dataset.with_epoch(num_worker_batches)  # each worker is iterating over this
    else:
        # last batches are partial, eval is done on single (master) node
        num_batches = math.ceil(num_samples / args.batch_size)

    dataloader = wds.WebLoader(
        dataset,
        batch_size=None,
        shuffle=False,
        num_workers=args.workers,
        persistent_workers=True,
    )

    # FIXME not clear which approach is better, with_epoch before vs after dataloader?
    # hoping to resolve via https://github.com/webdataset/webdataset/issues/169
    # if is_train:
    #     # roll over and repeat a few samples to get same number of full batches on each node
    #     global_batch_size = args.batch_size * args.world_size
    #     num_batches = math.ceil(num_samples / global_batch_size)
    #     num_workers = max(1, args.workers)
    #     num_batches = math.ceil(num_batches / num_workers) * num_workers
    #     num_samples = num_batches * global_batch_size
    #     dataloader = dataloader.with_epoch(num_batches)
    # else:
    #     # last batches are partial, eval is done on single (master) node
    #     num_batches = math.ceil(num_samples / args.batch_size)

    # add meta-data to dataloader instance for convenience
    dataloader.num_batches = num_batches
    dataloader.num_samples = num_samples

    return DataInfo(dataloader=dataloader, shared_epoch=shared_epoch, data_type='image-text')


def get_csv_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None):
    input_filename = args.train_data if is_train else args.val_data
    assert input_filename
    dataset = CsvDataset(
        input_filename,
        preprocess_fn,
        img_key=args.csv_img_key,
        caption_key=args.csv_caption_key,
        sep=args.csv_separator,
        tokenizer=tokenizer
    )
    num_samples = len(dataset)
    sampler = DistributedSampler(dataset) if args.distributed and is_train else None
    shuffle = is_train and not args.distributed and sampler is None

    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=shuffle,
        num_workers=args.workers,
        pin_memory=True,
        sampler=sampler,
        drop_last=is_train,
    )
    dataloader.num_samples = num_samples
    dataloader.num_batches = len(dataloader)

    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='image-text')


class SyntheticDataset(Dataset):

    def __init__(self, transform=None, image_size=(224, 224), caption="Dummy caption", dataset_size=100, tokenizer=None):
        self.transform = transform
        self.image_size = image_size
        self.caption = caption
        self.image = Image.new('RGB', image_size)
        self.dataset_size = dataset_size

        self.preprocess_txt = lambda text: tokenizer(text)[0]

    def __len__(self):
        return self.dataset_size

    def __getitem__(self, idx):
        if self.transform is not None:
            image = self.transform(self.image)
        return image, self.preprocess_txt(self.caption)


def get_synthetic_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None):
    image_size = preprocess_fn.transforms[0].size
    dataset = SyntheticDataset(
        transform=preprocess_fn, image_size=image_size, dataset_size=args.train_num_samples, tokenizer=tokenizer)
    num_samples = len(dataset)
    sampler = DistributedSampler(dataset) if args.distributed and is_train else None
    shuffle = is_train and not args.distributed and sampler is None

    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=shuffle,
        num_workers=args.workers,
        pin_memory=True,
        sampler=sampler,
        drop_last=is_train,
    )
    dataloader.num_samples = num_samples
    dataloader.num_batches = len(dataloader)

    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='image-text')

class PreferenceDataset(Dataset):
    def __init__(self, meta_file, image_folder, transforms, tokenizer, extra_data=(None, None)):
        extra_meta, extra_folder = extra_data
        self.transforms = transforms
        self.tokenizer = tokenizer
        self.open_image = Image.open
        if image_folder.startswith('s3://'):
            loader = TCSLoader()
            self.open_image = loader
        if meta_file is not None:
            with open(meta_file, 'r') as f:
                self.table = pa.Table.from_pylist(json.load(f))
            self.image_folder = image_folder
        else:
            # self.captions = pa.array()
            self.table = []
        if extra_meta:
            with open(extra_meta, 'r') as f:
                meta = json.load(f)
            self.files = [t['files'] for t in meta]
            self.extra_captions = [t['caption'] for t in meta]
            self.extra_label = [t['human_preference'] for t in meta]
            self.extra_image_folder = extra_folder
        else:
            self.extra_captions = []
        
    def __len__(self):
        return len(self.table) + len(self.extra_captions)

    def __getitem__(self, idx):
        try:
            if idx < len(self.table):
                images = [self.transforms(self.open_image(os.path.join(self.image_folder, file_names))) for file_names in self.table.column('file_path')[idx].as_py()]
                if not len(set([i.size() for i in images])) == 1:
                    return self.__getitem__((idx + 1) % len(self))
                label = self.table.column('pap_pref')[idx].as_py()
                caption = self.tokenizer(self.table.column('prompt')[idx].as_py())
            else:
                idx = idx - len(self.captions)
                images = [self.transforms(self.open_image(os.path.join(self.extra_image_folder, f))) for f in self.files[idx]]
                label = self.extra_label[idx]
                caption = self.tokenizer(self.extra_captions[idx])
            if not len(set([i.size() for i in images])) == 1:
                return self.__getitem__((idx + 1) % len(self))
            else:
                return images, label, caption
        except:
            return self.__getitem__((idx + 1) % len(self))

class HPDDataset(Dataset):
    def __init__(self, meta_file, image_folder, transforms, tokenizer, is_train=True):
        self.transforms = transforms
        self.tokenizer = tokenizer
        self.open_image = Image.open
        self.is_train = is_train
        if image_folder.startswith('s3://'):
            loader = TCSLoader()
            self.open_image = loader
        if meta_file is not None:
            with open(meta_file, 'r') as f:
                self.table = pa.Table.from_pylist(json.load(f))
            self.image_folder = image_folder
        else:
            self.table = []
        
    def __len__(self):
        return len(self.table)

    def __getitem__(self, idx):
        try:
            if self.is_train:
                images = [self.transforms(self.open_image(os.path.join(self.image_folder, file_names))) for file_names in self.table.column('file_path')[idx].as_py()]
                if not len(set([i.size() for i in images])) == 1:
                    return self.__getitem__((idx + 1) % len(self))
                label = self.table.column('human_preference')[idx].as_py()
                caption = self.tokenizer(self.table.column('prompt')[idx].as_py())
                # num_per_prompt = self.table.column('num_per_prompt')[idx].as_py()
                return images, label, caption
            else:
                images = [self.transforms(self.open_image(os.path.join(self.image_folder, file_names))) for file_names in self.table.column('file_path')[idx].as_py()]
                if not len(set([i.size() for i in images])) == 1:
                    return self.__getitem__((idx + 1) % len(self))
                label = self.table.column('human_preference')[idx].as_py()
                caption = self.tokenizer(self.table.column('prompt')[idx].as_py())
                return images, label, caption
        except:
            return self.__getitem__((idx + 1) % len(self))

        
class RatingDataset(Dataset):
    def __init__(self, meta_file, image_folder, transforms):
        self.transforms = transforms
        self.image_folder = image_folder
        self.open_image = Image.open
        self.max_size = 224
        if image_folder.startswith('s3://'):
            loader = TCSLoader()
            self.open_image = loader
        with open(meta_file, 'r') as f:
            self.table = pa.Table.from_pylist(json.load(f))

        
    def __len__(self):
        return len(self.table)

    def __getitem__(self, idx):
        try:
            images = self.transforms(self.open_image(os.path.join(self.image_folder, self.table.column('path')[idx].as_py())))
            img_weight, img_height = images.shape[1:]
            if img_weight != self.max_size or img_height != self.max_size:
                return self.__getitem__((idx + 10) % len(self))
            label = self.table.column('rating')[idx].as_py()
            return images, label
        except:
            return self.__getitem__((idx + 1) % len(self))

class RankingDataset(Dataset):
    def __init__(self, meta_file, image_folder, transforms, tokenizer):
        self.transforms = transforms
        self.image_folder = image_folder     
        self.open_image = Image.open
        if image_folder.startswith('s3://'):
            loader = TCSLoader()
            self.open_image = loader
        self.tokenizer = tokenizer

        with open(meta_file, 'r') as f:
            self.table = pa.Table.from_pylist(json.load(f))

    
    def __len__(self):
        return len(self.table)

    def __getitem__(self, idx):
        try:
            images = [self.transforms(self.open_image(os.path.join(self.image_folder, file_names))) for file_names in self.table.column('image_path')[idx].as_py()]
            label = self.table.column('rank')[idx].as_py()
            caption = self.tokenizer(self.table.column('prompt')[idx].as_py())
            return images, label, caption
        except:
            return self.__getitem__((idx + 1) % len(self))

class RegionDataset(Dataset):
    def __init__(self, meta_file, image_folder, transforms):
        self.transforms = transforms
        self.image_folder = image_folder
        self.open_image = Image.open

        with open(meta_file,'r') as f:
            self.table = pa.Table.from_pylist(json.load(f))


    
    def __len__(self):
        return len(self.table)
    
    def __getitem__(self, idx):
        try:
            img = self.open_image(os.path.join(self.image_folder, self.table.column('image_path')[idx].as_py()))
            mask = self.open_image(os.path.join(self.image_folder, self.table.column('mask_path')[idx].as_py()))
            img.putalpha(mask)
            masked_image = self.transforms(img)
            image = masked_image[:3]
            mask = masked_image[3]
            return image, mask
        except:
            return self.__getitem__((idx + 1) % len(self))

class ImageRewardDataset(Dataset):
    def __init__(self, meta_file, image_folder,transforms, tokenizer):
        self.transforms = transforms
        self.image_folder = image_folder     
        self.open_image = Image.open
        self.tokenizer = tokenizer

        with open(meta_file, 'r') as f:
            self.table = pa.Table.from_pylist(json.load(f))
        
    def __len__(self):
        return len(self.table)
    
    def __getitem__(self, idx):

        images = [self.transforms(self.open_image(os.path.join(self.image_folder, file_names))) for file_names in self.table.column('generations')[idx].as_py()]
        label = self.table.column('ranking')[idx].as_py()
        caption = self.tokenizer(self.table.column('prompt')[idx].as_py())
        return images, label, caption


def set_env_vars(something):
    os.environ['http_proxy'] = ''
    os.environ['https_proxy'] = ''

def collate_rating(batch):
    images = [sample[0] for sample in batch]
    labels = torch.tensor([sample[1] for sample in batch])
    images = torch.stack(images)
    return images, labels

def get_rating_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None):
    # only training data
    assert is_train
    dataset = RatingDataset(meta_file=args.train_data,
        image_folder=args.train_folder,
        transforms=preprocess_fn)
    num_samples = len(dataset)
    sampler = TrainingSampler(dataset) if args.distributed else None
    shuffle = is_train and not args.distributed

    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=shuffle,
        num_workers=args.workers,
        pin_memory=True,
        sampler=sampler,
        drop_last=is_train,
        collate_fn=collate_rating,
        worker_init_fn=set_env_vars,
        persistent_workers=True,
    )
    dataloader.num_samples = num_samples
    dataloader.num_batches = len(dataloader)

    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='rating')

def collate_pref(batch):
    images = [torch.stack(sample[0]) for sample in batch]
    num_images = torch.tensor([g.size(0) for g in images])
    labels = torch.tensor([sample[1] for sample in batch])
    captions = torch.cat([sample[2] for sample in batch])
    images = torch.cat(images)
    return images, num_images, labels, captions

def get_preference_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None, extra_val=False):
    if is_train:
        extra_data = (args.extra_train_data, args.extra_train_folder)
        dataset = PreferenceDataset(meta_file=args.train_data if is_train else args.val_data,
            image_folder=args.train_folder if is_train else args.val_folder,
            transforms=preprocess_fn, tokenizer=tokenizer, extra_data=extra_data)
    else:
        if extra_val:
            dataset = PreferenceDataset(meta_file=None,
                image_folder=None,
                transforms=preprocess_fn, tokenizer=tokenizer, extra_data=(args.extra_val_data, args.extra_val_folder))
        else:
            dataset = PreferenceDataset(meta_file=args.val_data,
                image_folder=args.val_folder,
                transforms=preprocess_fn, tokenizer=tokenizer)

    num_samples = len(dataset)
    sampler = TrainingSampler(dataset) if args.distributed and is_train else None
    shuffle = is_train and not args.distributed and sampler is None

    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=shuffle,
        num_workers=args.workers,
        pin_memory=True,
        sampler=sampler,
        drop_last=is_train,
        collate_fn=collate_pref,
        worker_init_fn=set_env_vars,
        persistent_workers=True,
    )
    dataloader.num_samples = num_samples
    dataloader.num_batches = len(dataloader)

    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='preference')

def collate_HPD(batch):
    image_1 = torch.stack([sample[0][0] for sample in batch])
    image_2 = torch.stack([sample[0][1] for sample in batch])
    label_1 = torch.tensor([sample[1][0] for sample in batch])
    label_2 = torch.tensor([sample[1][1] for sample in batch])
    labels = torch.cat([label_1, label_2], dim=0)
    captions = torch.cat([sample[2] for sample in batch])
    images = torch.cat([image_1, image_2])
    return images, labels, captions

def get_HPD_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None):
    dataset = HPDDataset(meta_file=args.train_data if is_train else args.val_data,
        image_folder=args.train_folder if is_train else args.val_folder,
        transforms=preprocess_fn, tokenizer=tokenizer, is_train=is_train)

    num_samples = len(dataset)
    sampler = TrainingSampler(dataset) if args.distributed and is_train else None
    shuffle = is_train and not args.distributed and sampler is None

    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=shuffle,
        num_workers=args.workers,
        pin_memory=True,
        sampler=sampler,
        drop_last=is_train,
        collate_fn=collate_HPD if is_train else collate_pref,
        worker_init_fn=set_env_vars,
        persistent_workers=True,
    )
    dataloader.num_samples = num_samples
    dataloader.num_batches = len(dataloader)

    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='HPD' if is_train else 'preference')

def get_ranking_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None):
    if is_train:
        dataset = RankingDataset(meta_file=args.train_data,
            image_folder=args.train_folder, transforms=preprocess_fn, tokenizer=tokenizer)
    else:
        dataset = RankingDataset(meta_file=args.val_data,
            image_folder=args.val_folder, transforms=preprocess_fn, tokenizer=tokenizer)

    num_samples = len(dataset)
    sampler = TrainingSampler(dataset) if args.distributed and is_train else None
    shuffle = is_train and not args.distributed and sampler is None
    
    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=shuffle,
        num_workers=args.workers,
        pin_memory=True,
        sampler=sampler,
        drop_last=is_train,
        collate_fn=collate_rank,
    )
    dataloader.num_samples = num_samples
    dataloader.num_batches = len(dataloader)
    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='ranking')

def get_regional_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None):
    if is_train:
        dataset = RegionDataset(
            meta_file=args.train_data,
            image_folder=args.train_folder,
            transforms=preprocess_fn
        )
    else:
        dataset = RegionDataset(
            meta_file=args.val_data,
            image_folder=args.val_folder,
            transforms=preprocess_fn
        )
    num_samples = len(dataset)
    sampler = TrainingSampler(dataset) if args.distributed else None
    shuffle = is_train and not args.distributed

    dataloader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        shuffle=shuffle,
        num_workers=args.workers,
        pin_memory=True,
        sampler=sampler,
        drop_last=is_train,
        worker_init_fn=set_env_vars,
        persistent_workers=True,
    )
    dataloader.num_samples = num_samples
    dataloader.num_batches = len(dataloader)

    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='regional')

def collate_rank(batch):
    images = [torch.stack(sample[0]) for sample in batch]
    num_images = torch.tensor([g.size(0) for g in images])
    labels = [torch.tensor(sample[1]) for sample in batch]
    captions = torch.cat([sample[2] for sample in batch])
    images = torch.cat(images)
    labels = torch.cat(labels)
    return images, num_images, labels, captions

def get_imagereward_dataset(args, preprocess_fn, is_train, epoch=0, tokenizer=None):
    #only support evaluation
    if not is_train:
        dataset = ImageRewardDataset(
            meta_file=args.val_data,
            image_folder = args.val_folder,
            transforms=preprocess_fn,
            tokenizer=tokenizer
        )
        num_samples = len(dataset)
        sampler = TrainingSampler(dataset) if args.distributed and is_train else None
        shuffle = is_train and not args.distributed
        
        dataloader = DataLoader(
            dataset,
            batch_size=args.batch_size,
            shuffle=shuffle,
            num_workers=args.workers,
            pin_memory=True,
            sampler=sampler,
            drop_last=is_train,
            worker_init_fn=set_env_vars,
            collate_fn=collate_rank,
            persistent_workers=True,
        )
        dataloader.num_samples = num_samples
        dataloader.num_batches = len(dataloader)

    return DataInfo(dataloader=dataloader, sampler=sampler, data_type='ImageReward')

def get_dataset_fn(data_path, dataset_type):
    if dataset_type == "webdataset":
        return get_wds_dataset
    elif dataset_type == "csv":
        return get_csv_dataset
    elif dataset_type == "synthetic":
        return get_synthetic_dataset
    elif dataset_type == "auto":
        ext = data_path.split('.')[-1]
        if ext in ['csv', 'tsv']:
            return get_csv_dataset
        elif ext in ['tar']:
            return get_wds_dataset
        else:
            raise ValueError(
                f"Tried to figure out dataset type, but failed for extension {ext}.")
    elif dataset_type == "preference":
        return get_preference_dataset
    elif dataset_type == "rating":
        return get_rating_dataset
    elif dataset_type == 'ranking':
        return get_ranking_dataset
    elif dataset_type == 'regional':
        return get_regional_dataset
    elif dataset_type == 'ImageReward':
        return get_imagereward_dataset
    elif dataset_type == "HPD":
        return get_HPD_dataset
    else:
        raise ValueError(f"Unsupported dataset type: {dataset_type}")
    

def get_data(args, preprocess_fns, epoch=0, tokenizer=None):
    preprocess_train, preprocess_val = preprocess_fns
    data = {}

    if args.train_data or args.dataset_type == "synthetic":
        assert len(args.train_data) == len(args.dataset_type) == len(args.batch_size) == len(args.workers) == len(args.train_folder) == len(args.train_data_sample_ratio) == len(args.ignore_in_train)
        for train_data, dataset_type, batch_size, workers, train_folder, train_data_sample_ratio, ignore in zip(args.train_data, args.dataset_type, args.batch_size, args.workers, args.train_folder, args.train_data_sample_ratio, args.ignore_in_train):
            if ignore:
                continue
            if 'train' not in data:
                data['train'] = []
            new_args = copy.deepcopy(args)
            new_args.train_data = train_data
            new_args.dataset_type = dataset_type
            new_args.batch_size = batch_size
            new_args.workers = workers
            new_args.train_folder = train_folder
            new_args.train_data_sample_ratio = train_data_sample_ratio
            dataset = get_dataset_fn(new_args.train_data, new_args.dataset_type)(
                new_args, preprocess_train, is_train=True, epoch=epoch, tokenizer=tokenizer)
            data['train'].append(dataset)

    if args.val_data[0]:
        assert len(args.val_data) == len(args.dataset_type) == len(args.batch_size) == len(args.workers) == len(args.val_folder) == len(args.ignore_in_val)
        # data['val'] = []
        for val_data, dataset_type, batch_size, workers, val_folder ,ignore in zip(args.val_data, args.dataset_type, args.batch_size, args.workers, args.val_folder, args.ignore_in_val):
            if ignore:
                continue
            if 'val' not in data:
                data['val'] = []
            new_args = copy.deepcopy(args)
            new_args.val_data = val_data
            new_args.dataset_type = dataset_type
            new_args.batch_size = batch_size
            new_args.workers = workers
            new_args.val_folder = val_folder
            dataset = get_dataset_fn(new_args.val_data, new_args.dataset_type)(
                new_args, preprocess_val, is_train=False, tokenizer=tokenizer)
            data['val'].append(dataset)

    if args.extra_val_data:
        assert False
        data["extra_val"] = get_dataset_fn(args.val_data, args.dataset_type)(
            args, preprocess_val, is_train=False, tokenizer=tokenizer, extra_val=True)

    if args.imagenet_val is not None:
        data["imagenet-val"] = get_imagenet(args, preprocess_fns, "val")

    if args.imagenet_v2 is not None:
        data["imagenet-v2"] = get_imagenet(args, preprocess_fns, "v2")

    return data