Spaces:
Runtime error
Runtime error
File size: 9,563 Bytes
54199b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from cProfile import label
import os
import json
import numpy as np
from tqdm import tqdm
from argparse import ArgumentParser
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
from src.open_clip import create_model_and_transforms, get_tokenizer
from src.training.train import calc_ImageReward, inversion_score
from src.training.data import ImageRewardDataset, collate_rank, RankingDataset
parser = ArgumentParser()
parser.add_argument('--data-type', type=str, choices=['benchmark', 'test', 'ImageReward', 'drawbench'])
parser.add_argument('--data-path', type=str, help='path to dataset')
parser.add_argument('--image-path', type=str, help='path to image files')
parser.add_argument('--checkpoint', type=str, help='path to checkpoint')
parser.add_argument('--batch-size', type=int, default=20)
args = parser.parse_args()
batch_size = args.batch_size
args.model = "ViT-H-14"
args.precision = 'amp'
print(args.model)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model, preprocess_train, preprocess_val = create_model_and_transforms(
args.model,
'laion2B-s32B-b79K',
precision=args.precision,
device=device,
jit=False,
force_quick_gelu=False,
force_custom_text=False,
force_patch_dropout=False,
force_image_size=None,
pretrained_image=False,
image_mean=None,
image_std=None,
light_augmentation=True,
aug_cfg={},
output_dict=True,
with_score_predictor=False,
with_region_predictor=False
)
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['state_dict'])
tokenizer = get_tokenizer(args.model)
model.eval()
class BenchmarkDataset(Dataset):
def __init__(self, meta_file, image_folder,transforms, tokenizer):
self.transforms = transforms
self.image_folder = image_folder
self.tokenizer = tokenizer
self.open_image = Image.open
with open(meta_file, 'r') as f:
self.annotations = json.load(f)
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
try:
img_path = os.path.join(self.image_folder, f'{idx:05d}.jpg')
images = self.transforms(self.open_image(os.path.join(img_path)))
caption = self.tokenizer(self.annotations[idx])
return images, caption
except:
print('file not exist')
return self.__getitem__((idx + 1) % len(self))
def evaluate_IR(data_path, image_folder, model):
meta_file = data_path + '/ImageReward_test.json'
dataset = ImageRewardDataset(meta_file, image_folder, preprocess_val, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_rank)
score = 0
total = len(dataset)
with torch.no_grad():
for batch in tqdm(dataloader):
images, num_images, labels, texts = batch
images = images.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
num_images = num_images.to(device=device, non_blocking=True)
labels = labels.to(device=device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(images, texts)
image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
logits_per_image = logit_scale * image_features @ text_features.T
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
predicted = [torch.argsort(-k) for k in paired_logits_list]
hps_ranking = [[predicted[i].tolist().index(j) for j in range(n)] for i,n in enumerate(num_images)]
labels = [label for label in labels.split(num_images.tolist())]
score +=sum([calc_ImageReward(paired_logits_list[i].tolist(), labels[i]) for i in range(len(hps_ranking))])
print('ImageReward:', score/total)
def evaluate_rank(data_path, image_folder, model):
meta_file = data_path + '/test.json'
dataset = RankingDataset(meta_file, image_folder, preprocess_val, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_rank)
score = 0
total = len(dataset)
all_rankings = []
with torch.no_grad():
for batch in tqdm(dataloader):
images, num_images, labels, texts = batch
images = images.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
num_images = num_images.to(device=device, non_blocking=True)
labels = labels.to(device=device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(images, texts)
image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
logits_per_image = logit_scale * image_features @ text_features.T
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
predicted = [torch.argsort(-k) for k in paired_logits_list]
hps_ranking = [[predicted[i].tolist().index(j) for j in range(n)] for i,n in enumerate(num_images)]
labels = [label for label in labels.split(num_images.tolist())]
all_rankings.extend(hps_ranking)
score += sum([inversion_score(hps_ranking[i], labels[i]) for i in range(len(hps_ranking))])
print('ranking_acc:', score/total)
with open('logs/hps_rank.json', 'w') as f:
json.dump(all_rankings, f)
def collate_eval(batch):
images = torch.stack([sample[0] for sample in batch])
captions = torch.cat([sample[1] for sample in batch])
return images, captions
def evaluate_benchmark(data_path, root_dir, model):
meta_dir = data_path
model_list = os.listdir(root_dir)
style_list = os.listdir(os.path.join(root_dir, model_list[0]))
score = {}
for model_id in model_list:
score[model_id]={}
for style in style_list:
# score[model_id][style] = [0] * 10
score[model_id][style] = []
image_folder = os.path.join(root_dir, model_id, style)
meta_file = os.path.join(meta_dir, f'{style}.json')
dataset = BenchmarkDataset(meta_file, image_folder, preprocess_val, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_eval)
with torch.no_grad():
for i, batch in enumerate(dataloader):
images, texts = batch
images = images.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(images, texts)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits_per_image = image_features @ text_features.T
# score[model_id][style][i] = torch.sum(torch.diagonal(logits_per_image)).cpu().item() / 80
score[model_id][style].extend(torch.diagonal(logits_per_image).cpu().tolist())
print('-----------benchmark score ---------------- ')
for model_id, data in score.items():
for style , res in data.items():
avg_score = [np.mean(res[i:i+80]) for i in range(0, 800, 80)]
print(model_id, '\t', style, '\t', np.mean(avg_score), '\t', np.std(avg_score))
def evaluate_benchmark_DB(data_path, root_dir, model):
meta_file = data_path + '/drawbench.json'
model_list = os.listdir(root_dir)
score = {}
for model_id in model_list:
image_folder = os.path.join(root_dir, model_id)
dataset = BenchmarkDataset(meta_file, image_folder, preprocess_val, tokenizer)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=4, collate_fn=collate_eval)
score[model_id] = 0
with torch.no_grad():
for batch in tqdm(dataloader):
images, texts = batch
images = images.to(device=device, non_blocking=True)
texts = texts.to(device=device, non_blocking=True)
with torch.cuda.amp.autocast():
outputs = model(images, texts)
image_features, text_features = outputs["image_features"], outputs["text_features"]
logits_per_image = image_features @ text_features.T
diag = torch.diagonal(logits_per_image)
score[model_id] += torch.sum(diag).cpu().item()
score[model_id] = score[model_id] / len(dataset)
# with open('logs/benchmark_score_DB.json', 'w') as f:
# json.dump(score, f)
print('-----------drawbench score ---------------- ')
for model, data in score.items():
print(model, '\t', '\t', np.mean(data))
if args.data_type == 'ImageReward':
evaluate_IR(args.data_path, args.image_path, model)
elif args.data_type == 'test':
evaluate_rank(args.data_path, args.image_path, model)
elif args.data_type == 'benchmark':
evaluate_benchmark(args.data_path, args.image_path, model)
elif args.data_type == 'drawbench':
evaluate_benchmark_DB(args.data_path, args.image_path, model)
else:
raise NotImplementedError
|