File size: 20,998 Bytes
54199b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import hashlib
import itertools
import json
import logging
import math
import random
import os
import tempfile
import time
import einops
from torch.nn.utils.rnn import pad_sequence

import numpy as np
import torch
import torch.nn.functional as F
from torch.nn.parallel.distributed import DistributedDataParallel

from .data import ImageRewardDataset, RankingDataset

from open_clip import get_cast_dtype, CLIP, CustomTextCLIP
from .distributed import is_master, barrier
from .zero_shot import zero_shot_eval
from .precision import get_autocast
from ..open_clip.loss import PreferenceLoss, RankingLoss, HPSLoss


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

def postprocess_clip_output(model_out):
    return {
        "image_features": model_out[0],
        "text_features": model_out[1],
        "logit_scale": model_out[2]
    }

def unwrap_model(model):
    if hasattr(model, 'module'):
        return model.module
    else:
        return model


def backward(total_loss, scaler):
    if scaler is not None:
        scaler.scale(total_loss).backward()
    else:
        total_loss.backward()

def random_sampling_iterator(iterators, sampling_ratios, data_types, num_iters):
    iterators = [iter(iterator) for iterator in iterators]
    num_iterators = len(iterators)
    loop_counter = 0

    while loop_counter < num_iters:
        current_state = random.getstate()
        random.seed(loop_counter)
        iterator_idx = random.choices(range(num_iterators), sampling_ratios)[0]
        random.setstate(current_state)
        yield next(iterators[iterator_idx]), data_types[iterator_idx]
        loop_counter += 1


def train_iters(model, data, iterations, optimizer, scaler, scheduler, dist_model, args, tb_writer=None):
    device = torch.device(args.device)
    autocast = get_autocast(args.precision)
    cast_dtype = get_cast_dtype(args.precision)

    model.train()
    
    ce_loss = PreferenceLoss()
    mse_loss = torch.nn.MSELoss()
    rk_loss = RankingLoss()
    hps_loss = HPSLoss()
    if args.distill:
        dist_model.eval()

    for train_set in data['train']:
        train_set.set_epoch(0)  # set epoch in process safe manner via sampler or shared_epoch
    data_types = [d.data_type for d in data['train']]
    train_data_sample_ratios = [sample_ratio for sample_ratio, ignore in zip(args.train_data_sample_ratio, args.ignore_in_train) if not ignore]
    dataloader = random_sampling_iterator([dataset.dataloader for dataset in data['train']], train_data_sample_ratios, data_types, iterations)


    sample_digits = math.ceil(math.log(sum([dataset.dataloader.num_samples for dataset in data['train']]) + 1, 10))
    losses_m = {}
    batch_time_m = AverageMeter()
    data_time_m = AverageMeter()
    end = time.time()

    for step, (batch, data_type) in enumerate(dataloader):
        # TODO: currently only test on accum_freq==1

        if not args.skip_scheduler:
            scheduler(step)

        if data_type == 'preference':
            images, num_images, labels, texts = batch
            texts = texts.to(device=device, non_blocking=True)
        elif data_type == 'rating':
            images, labels = batch
        elif data_type == 'regional':
            images, labels = batch
        elif data_type == 'ranking':
            images, num_images, labels, texts = batch
            texts = texts.to(device=device, non_blocking=True)
        elif data_type == 'HPD':
            images, labels, texts = batch
            # num_per_prompts = num_per_prompts.to(device=device, non_blocking=True)
            texts = texts.to(device=device, non_blocking=True)
        images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
        labels = labels.to(device=device, non_blocking=True)

        data_time_m.update(time.time() - end)
        optimizer.zero_grad()
        if args.accum_freq == 1:
            with autocast():

                if data_type == 'rating' or args.no_text_condition:
                    image_features = unwrap_model(model).visual(images)
                    scores = unwrap_model(model).score_predictor(image_features)
                    if args.no_text_condition:  
                        paired_logits_list = [logit[:,0] for i, logit in enumerate(scores.split(num_images.tolist()))]
                        paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-999)
                        total_loss = F.cross_entropy(paired_logits, labels)
                    else:
                        total_loss = mse_loss(scores.squeeze(), labels.to(scores.dtype))
                elif data_type == 'preference' :
                    output = model(images, texts)
                    image_features, text_features, logit_scale = output["image_features"], output["text_features"], output["logit_scale"]
                    # total_loss = loss(image_features, text_features, logit_scale)
                    logits_per_image = logit_scale * image_features @ text_features.T
                    total_loss = ce_loss(logits_per_image, num_images, labels)
                elif data_type == 'HPD':
                    output = model(images, texts)
                    image_features, text_features, logit_scale = output["image_features"], output["text_features"], output["logit_scale"]
                    logits_per_text = logit_scale * text_features @ image_features.T
                    total_loss = hps_loss(logits_per_text, labels)
                elif data_type == 'ranking':
                    output = model(images, texts)
                    image_features, text_features, logit_scale = output["image_features"], output["text_features"], output["logit_scale"]
                    # logits_per_image = logit_scale * image_features @ text_features.T
                    score =  logit_scale * image_features @ text_features.T
                    total_loss = rk_loss(score, num_images, labels, args.margin)

                elif data_type == 'regional':
                    # logit_scale = model.logit_scale
                    feature_map = unwrap_model(model).visual(images, skip_pool=True)[:, 1:]
                    logits = unwrap_model(model).region_predictor(feature_map)
                    wh = int(math.sqrt(feature_map.size(1)))
                    ps = images.size(2) // wh
                    logits = logits.unflatten(1, (wh, wh))[:,:,:,0]
                    # downsample the labels to match the feature map size
                    patches = einops.reduce(labels, 'b (h s1) (w s2) -> b h w', 'mean', s1=ps, s2=ps)
                    patches = (patches > 0).float()
                    total_loss = mse_loss(logits.sigmoid(), patches.to(patches.dtype))

            backward(total_loss, scaler)
            losses = dict(total_loss=total_loss)

            if scaler is not None:
                if args.horovod:
                    optimizer.synchronize()
                    scaler.unscale_(optimizer)
                    if args.grad_clip_norm is not None:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
                    with optimizer.skip_synchronize():
                        scaler.step(optimizer)
                else:
                    if args.grad_clip_norm is not None:
                        scaler.unscale_(optimizer)
                        torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
                    scaler.step(optimizer)
                scaler.update()
            else:
                if args.grad_clip_norm is not None:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip_norm, norm_type=2.0)
                optimizer.step()

        # Note: we clamp to 4.6052 = ln(100), as in the original paper.
        with torch.no_grad():
            unwrap_model(model).logit_scale.clamp_(0, math.log(100))

        batch_time_m.update(time.time() - end)
        end = time.time()
        batch_count = step + 1
        if is_master(args) and (step % args.log_every_n_steps == 0 or batch_count == iterations):
            batch_size = len(images)
            num_samples = batch_count * args.accum_freq 
            percent_complete = 100.0 * batch_count / iterations

            # NOTE loss is coarsely sampled, just master node and per log update
            for key, val in losses.items():
                if key not in losses_m:
                    losses_m[key] = AverageMeter()
                losses_m[key].update(val.item(), batch_size)

            logit_scale_scalar = unwrap_model(model).logit_scale.item()
            loss_log = " ".join(
                [
                    f"{loss_name.capitalize()}: {loss_m.val:#.5g} ({loss_m.avg:#.5g})" 
                    for loss_name, loss_m in losses_m.items()
                ]
            )
            samples_per_second = args.accum_freq * args.world_size / batch_time_m.val
            samples_per_second_per_gpu = args.accum_freq / batch_time_m.val
            logging.info(
                f"Train iterations: [{num_samples:>{sample_digits}}/{iterations} ({percent_complete:.0f}%)] "
                f"Data (t): {data_time_m.avg:.3f} "
                f"Batch (t): {batch_time_m.avg:.3f}, {samples_per_second:#g}/s, {samples_per_second_per_gpu:#g}/s/gpu "
                f"LR: {optimizer.param_groups[0]['lr']:5f} "
                f"Logit Scale: {logit_scale_scalar:.3f} " + loss_log
            )

            # Save train loss / etc. Using non avg meter values as loggers have their own smoothing
            log_data = {
                "data_time": data_time_m.val,
                "batch_time": batch_time_m.val,
                "samples_per_second": samples_per_second,
                "samples_per_second_per_gpu": samples_per_second_per_gpu,
                "scale": logit_scale_scalar,
                "lr": optimizer.param_groups[0]["lr"]
            }            
            log_data.update({name:val.val for name,val in losses_m.items()})

            for name, val in log_data.items():
                name = "train/" + name
                if tb_writer is not None:
                    tb_writer.add_scalar(name, val, step)

            # resetting batch / data time meters per log window
            batch_time_m.reset()
            data_time_m.reset()

def evaluate_preference(model, data, args):
    model = unwrap_model(model)
    model.eval()
    dataloader = data.dataloader
    samples_per_val = dataloader.num_samples

    device = torch.device(args.device)
    autocast = get_autocast(args.precision)
    cast_dtype = get_cast_dtype(args.precision)

    total = 0
    correct = 0
    with torch.no_grad():
        for i, batch in enumerate(dataloader):
            if i % args.world_size != args.rank:
                continue
            images, num_images, labels, texts = batch
            images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
            texts = texts.to(device=device, non_blocking=True)

            with autocast():

                if args.no_text_condition:
                    image_features = model.visual(images)
                    logit_scale = model.logit_scale
                    scores = model.score_predictor(image_features)
                    paired_logits_list = [logit[:,0] for i, logit in enumerate(scores.split(num_images.tolist()))]
                else:
                    outputs = model(images, texts)
                    image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
                    logits_per_image = logit_scale * image_features @ text_features.T
                    paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
                predicted = torch.tensor([k.argmax().item() for k in paired_logits_list])
                correct += (predicted == labels).int().sum().item()
                total += predicted.numel()
    
    # write to a temp file
    file_name = hashlib.md5(str(args.name).encode()).hexdigest()
    with open(f"{file_name}_{args.rank}.json", "w") as f:
        json.dump(dict(
            correct=correct,
            total=total,
        ), f)
    time.sleep(0.1)
        
    barrier(args)

    correct = 0
    total = 0
    if is_master(args):
        for i in range(args.world_size):
            with open(f"{file_name}_{i}.json", "r") as f:
                data = json.load(f)
                correct += data["correct"]
                total += data["total"]
            os.remove(f"{file_name}_{i}.json")

        logging.info(
            f"Final Acc: {correct / total:.4f}\t")
        
    return correct / (total + 1e-6)
            
def evaluate_regional(model, data, args):
    dataloader = data.dataloader
    samples_per_val = dataloader.num_samples

    device = torch.device(args.device)
    autocast = get_autocast(args.precision)
    cast_dtype = get_cast_dtype(args.precision)
    num_samples = len(dataloader)
    threshold = 0.5
    with torch.no_grad():
        score = 0
        total = 0
        for i, batch in enumerate(dataloader):
            images, labels = batch
            images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
            labels = labels.to(device=device, non_blocking=True)

            with autocast():
                feature_map = model.visual(images, skip_pool=True)[:, 1:]
                logits = model.region_predictor(feature_map)
                wh = int(math.sqrt(feature_map.size(1)))
                ps = images.size(2) // wh
                logits = logits.unflatten(1, (wh, wh))[:,:,:,0]
                # downsample the labels to match the feature map size
                patches = einops.reduce(labels, 'b (h s1) (w s2) -> b h w', 'mean', s1=ps, s2=ps)
                patches = (patches > 0).float()
                pred_mask = (logits.sigmoid() > threshold).float()
                #calc IOU
                intersection = (pred_mask * patches).sum()
                union = pred_mask.sum() + patches.sum() - intersection
                iou_score = intersection / union
            score += iou_score
            total += 1

            if is_master(args) and (i % 100) == 0:
                logging.info(
                    # f"[{i} / {samples_per_val}]\t"
                    f"[{i} / {len(dataloader)}]\t"
                    f"Current IoU: {score / (total + 0.001):.4f}\t")

    if is_master(args):
        logging.info(
            f"Final IoU: {score / (total + 0.001):.4f}\t")

    return score / (total + 0.001)

def inversion_score(p1, p2):
    assert len(p1) == len(p2), f'{len(p1)}, {len(p2)}'
    n = len(p1)
    cnt = 0
    for i in range(n-1):
        for j in range(i+1, n):
            if p1[i] > p1[j] and p2[i] < p2[j]:
                cnt += 1
            elif p1[i] < p1[j] and p2[i] > p2[j]:
                cnt += 1
    return 1 - cnt / (n * (n - 1) / 2)

def model_pair_score(score:dict, p1, p2, num_image):
    model_pairs = set()
    for i in range(num_image):
        if i not in score.keys():
            score[i] = {}

        for j in range(num_image):
            if j not in score[i].keys():
                score[i][j] = 0
            if j == i or (i, j) in model_pairs or (j, i) in model_pairs:
                continue
            model_pairs.add((i,j))
            if (p1[i] - p1[j]) * (p2[i] - p2[j]) > 0:
                score[i][j] += 1
    return score

def all_gather(tensor):
    world_size = torch.distributed.get_world_size()
    tensor_list = [torch.ones_like(tensor) for _ in range(world_size)]
    torch.distributed.all_gather(tensor_list, tensor, async_op=False)
    return torch.cat(tensor_list, dim=0)

def evaluate_ranking(model, data, args):
    model = unwrap_model(model)
    model.eval()
    dataloader = data.dataloader
    samples_per_val = dataloader.num_samples

    device = torch.device(args.device)
    autocast = get_autocast(args.precision)
    cast_dtype = get_cast_dtype(args.precision)

    score = 0 
    # pair_score = {}
    with torch.no_grad():
        for i, batch in enumerate(dataloader):
            if i % args.world_size != args.local_rank:
                continue

            images, num_images, labels, texts = batch
            images = images.to(device=device, dtype=cast_dtype, non_blocking=True)
            texts = texts.to(device=device, non_blocking=True)
            num_images = num_images.to(device=device, non_blocking=True)
            labels = labels.to(device=device, non_blocking=True)
            
            with autocast():
                if args.no_text_condition:
                    image_features = model.visual(images)
                    logit_scale = model.logit_scale
                    scores = model.score_predictor(image_features)
                    paired_logits_list = [logit[:,0] for i, logit in enumerate(scores.split(num_images.tolist()))]
                else:
                    outputs = model(images, texts)
                    image_features, text_features, logit_scale = outputs["image_features"], outputs["text_features"], outputs["logit_scale"]
                    logits_per_image = logit_scale * image_features @ text_features.T
                    paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
                predicted = [torch.argsort(-k) for k in paired_logits_list]
                hps_ranking = [[predicted[i].tolist().index(j) for j in range(n)] for i,n in enumerate(num_images)]
                labels = [label for label in labels.split(num_images.tolist())] 
                if isinstance(dataloader.dataset, RankingDataset):
                    score += sum([inversion_score(hps_ranking[i], labels[i]) for i in range(len(hps_ranking))])
                elif isinstance(dataloader.dataset, ImageRewardDataset):
                    score +=sum([calc_ImageReward(paired_logits_list[i].tolist(), labels[i]) for i in range(len(hps_ranking))])

    # write score to a tempfile, file name is a hash string
    file_name = hashlib.md5(str(args.name).encode()).hexdigest()
    with open(f"{file_name}_{args.rank}.tmp", "w") as f:
        f.write(str(score))
    time.sleep(0.1)
        
    barrier(args)

    score = 0
    if is_master(args):
        for i in range(args.world_size):
            with open(f"{file_name}_{i}.tmp", "r") as f:
                score += float(f.read())
            os.remove(f"{file_name}_{i}.tmp")

        score = score / samples_per_val

        logging.info(
            f"Final Acc: {score:.4f}\t")
        # return score, pair_score
    return score

def calc_ImageReward( pred, gt):
    # using inversion score calculate method in ImageReward
    # There's some little difference because ImageReward benchmark has tie rankings
    tol_cnt = 0.
    true_cnt = 0.
    for idx in range(len(gt)):
        item_base = gt
        item = pred
        for i in range(len(item_base)):
            for j in range(i+1, len(item_base)):
                if item_base[i] > item_base[j]:
                    if item[i] >= item[j]:
                        tol_cnt += 1
                    elif item[i] < item[j]:
                        tol_cnt += 1
                        true_cnt += 1
                elif item_base[i] < item_base[j]:
                    if item[i] > item[j]:
                        tol_cnt += 1
                        true_cnt += 1
                    elif item[i] <= item[j]:
                        tol_cnt += 1
    
    return true_cnt / tol_cnt

def get_clip_metrics(image_features, text_features, logit_scale):
    metrics = {}
    logits_per_image = (logit_scale * image_features @ text_features.t()).detach().cpu()
    logits_per_text = logits_per_image.t().detach().cpu()

    logits = {"image_to_text": logits_per_image, "text_to_image": logits_per_text}
    ground_truth = torch.arange(len(text_features)).view(-1, 1)

    for name, logit in logits.items():
        ranking = torch.argsort(logit, descending=True)
        preds = torch.where(ranking == ground_truth)[1]
        preds = preds.detach().cpu().numpy()
        metrics[f"{name}_mean_rank"] = preds.mean() + 1
        metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1
        for k in [1, 5, 10]:
            metrics[f"{name}_R@{k}"] = np.mean(preds < k)

    return metrics


def maybe_compute_generative_loss(model_out):
    if "logits" in model_out and "labels" in model_out:
        token_logits = model_out["logits"]
        token_labels = model_out["labels"]
        return F.cross_entropy(token_logits.permute(0, 2, 1), token_labels)