File size: 1,920 Bytes
0d9e7b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import copy
from llama_cpp import Llama
from huggingface_hub import hf_hub_download  # load from huggingfaces


CONST_REPO_ID = "TheBloke/Llama-2-7B-Chat-GGML"
CONST_FILENAME = "llama-2-7b-chat.ggmlv3.q6_K.bin"

N_CTX = 4096

llm = Llama(model_path=hf_hub_download(
    repo_id=CONST_REPO_ID,
    filename=CONST_FILENAME),
    n_ctx=N_CTX
)
history = N_CTX


pre_prompt = \
    " The user and the AI are having a conversation : <|endoftext|> \n"


def generate_text(input_text, history):
    temp = ""
    if history == []:
        input_text_with_history = f"SYSTEM:{pre_prompt}" + \
            "\n" + f"USER: {input_text} " + "\n" + " ASSISTANT:"
    else:
        input_text_with_history = f"{history[-1][1]}" + "\n"
        input_text_with_history += f"USER: {input_text}" + "\n" + " ASSISTANT:"
    output = llm(input_text_with_history, max_tokens=4096, stop=[
        "<|prompter|>", "<|endoftext|>", "<|endoftext|> \n",
        "ASSISTANT:", "USER:", "SYSTEM:"], stream=True
    )
    for out in output:
        stream = copy.deepcopy(out)
        temp += stream["choices"][0]["text"]
        yield temp

    history = ["init", input_text_with_history]


demo = gr.ChatInterface(generate_text,
                        title=f"Lama2 on CPU: {CONST_FILENAME}",
                        description=f"Running Llama2 with llama_cpp: \
                               \r\n<i>{CONST_REPO_ID} {CONST_FILENAME}</i>",
                        examples=["Hi!",
                                  "Does it hard to be machine?",
                                  "When i am need a doctor?",
                                  "Ты говоришь по русски? Я злой."
                                  ],
                        cache_examples=True,
                        undo_btn="Undo",
                        clear_btn="Clear")

demo.queue(concurrency_count=10, max_size=50)
demo.launch()