File size: 32,726 Bytes
0ad74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
import copy
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

from huggingface_hub.utils import logging, yaml_dump


logger = logging.get_logger(__name__)


@dataclass
class EvalResult:
    """
    Flattened representation of individual evaluation results found in model-index of Model Cards.

    For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1.

    Args:
        task_type (`str`):
            The task identifier. Example: "image-classification".
        dataset_type (`str`):
            The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets.
        dataset_name (`str`):
            A pretty name for the dataset. Example: "Common Voice (French)".
        metric_type (`str`):
            The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics.
        metric_value (`Any`):
            The metric value. Example: 0.9 or "20.0 ± 1.2".
        task_name (`str`, *optional*):
            A pretty name for the task. Example: "Speech Recognition".
        dataset_config (`str`, *optional*):
            The name of the dataset configuration used in `load_dataset()`.
            Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info:
            https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
        dataset_split (`str`, *optional*):
            The split used in `load_dataset()`. Example: "test".
        dataset_revision (`str`, *optional*):
            The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
            Example: 5503434ddd753f426f4b38109466949a1217c2bb
        dataset_args (`Dict[str, Any]`, *optional*):
            The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}`
        metric_name (`str`, *optional*):
            A pretty name for the metric. Example: "Test WER".
        metric_config (`str`, *optional*):
            The name of the metric configuration used in `load_metric()`.
            Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
            See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
        metric_args (`Dict[str, Any]`, *optional*):
            The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4
        verified (`bool`, *optional*):
            Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
        verify_token (`str`, *optional*):
            A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
        source_name (`str`, *optional*):
            The name of the source of the evaluation result. Example: "Open LLM Leaderboard".
        source_url (`str`, *optional*):
            The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard".
    """

    # Required

    # The task identifier
    # Example: automatic-speech-recognition
    task_type: str

    # The dataset identifier
    # Example: common_voice. Use dataset id from https://hf.co/datasets
    dataset_type: str

    # A pretty name for the dataset.
    # Example: Common Voice (French)
    dataset_name: str

    # The metric identifier
    # Example: wer. Use metric id from https://hf.co/metrics
    metric_type: str

    # Value of the metric.
    # Example: 20.0 or "20.0 ± 1.2"
    metric_value: Any

    # Optional

    # A pretty name for the task.
    # Example: Speech Recognition
    task_name: Optional[str] = None

    # The name of the dataset configuration used in `load_dataset()`.
    # Example: fr in `load_dataset("common_voice", "fr")`.
    # See the `datasets` docs for more info:
    # https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name
    dataset_config: Optional[str] = None

    # The split used in `load_dataset()`.
    # Example: test
    dataset_split: Optional[str] = None

    # The revision (AKA Git Sha) of the dataset used in `load_dataset()`.
    # Example: 5503434ddd753f426f4b38109466949a1217c2bb
    dataset_revision: Optional[str] = None

    # The arguments passed during `Metric.compute()`.
    # Example for `bleu`: max_order: 4
    dataset_args: Optional[Dict[str, Any]] = None

    # A pretty name for the metric.
    # Example: Test WER
    metric_name: Optional[str] = None

    # The name of the metric configuration used in `load_metric()`.
    # Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`.
    # See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations
    metric_config: Optional[str] = None

    # The arguments passed during `Metric.compute()`.
    # Example for `bleu`: max_order: 4
    metric_args: Optional[Dict[str, Any]] = None

    # Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set.
    verified: Optional[bool] = None

    # A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not.
    verify_token: Optional[str] = None

    # The name of the source of the evaluation result.
    # Example: Open LLM Leaderboard
    source_name: Optional[str] = None

    # The URL of the source of the evaluation result.
    # Example: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
    source_url: Optional[str] = None

    @property
    def unique_identifier(self) -> tuple:
        """Returns a tuple that uniquely identifies this evaluation."""
        return (
            self.task_type,
            self.dataset_type,
            self.dataset_config,
            self.dataset_split,
            self.dataset_revision,
        )

    def is_equal_except_value(self, other: "EvalResult") -> bool:
        """
        Return True if `self` and `other` describe exactly the same metric but with a
        different value.
        """
        for key, _ in self.__dict__.items():
            if key == "metric_value":
                continue
            # For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`,
            # so we exclude it here in the comparison.
            if key != "verify_token" and getattr(self, key) != getattr(other, key):
                return False
        return True

    def __post_init__(self) -> None:
        if self.source_name is not None and self.source_url is None:
            raise ValueError("If `source_name` is provided, `source_url` must also be provided.")


@dataclass
class CardData:
    """Structure containing metadata from a RepoCard.

    [`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`].

    Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data
    (example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not
    inherit from `dict` to allow this export step.
    """

    def __init__(self, ignore_metadata_errors: bool = False, **kwargs):
        self.__dict__.update(kwargs)

    def to_dict(self) -> Dict[str, Any]:
        """Converts CardData to a dict.

        Returns:
            `dict`: CardData represented as a dictionary ready to be dumped to a YAML
            block for inclusion in a README.md file.
        """

        data_dict = copy.deepcopy(self.__dict__)
        self._to_dict(data_dict)
        return _remove_none(data_dict)

    def _to_dict(self, data_dict):
        """Use this method in child classes to alter the dict representation of the data. Alter the dict in-place.

        Args:
            data_dict (`dict`): The raw dict representation of the card data.
        """
        pass

    def to_yaml(self, line_break=None) -> str:
        """Dumps CardData to a YAML block for inclusion in a README.md file.

        Args:
            line_break (str, *optional*):
                The line break to use when dumping to yaml.

        Returns:
            `str`: CardData represented as a YAML block.
        """
        return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip()

    def __repr__(self):
        return repr(self.__dict__)

    def __str__(self):
        return self.to_yaml()

    def get(self, key: str, default: Any = None) -> Any:
        """Get value for a given metadata key."""
        return self.__dict__.get(key, default)

    def pop(self, key: str, default: Any = None) -> Any:
        """Pop value for a given metadata key."""
        return self.__dict__.pop(key, default)

    def __getitem__(self, key: str) -> Any:
        """Get value for a given metadata key."""
        return self.__dict__[key]

    def __setitem__(self, key: str, value: Any) -> None:
        """Set value for a given metadata key."""
        self.__dict__[key] = value

    def __contains__(self, key: str) -> bool:
        """Check if a given metadata key is set."""
        return key in self.__dict__

    def __len__(self) -> int:
        """Return the number of metadata keys set."""
        return len(self.__dict__)


class ModelCardData(CardData):
    """Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md

    Args:
        base_model (`str` or `List[str]`, *optional*):
            The identifier of the base model from which the model derives. This is applicable for example if your model is a
            fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs
            if your model derives from multiple models). Defaults to None.
        datasets (`List[str]`, *optional*):
            List of datasets that were used to train this model. Should be a dataset ID
            found on https://hf.co/datasets. Defaults to None.
        eval_results (`Union[List[EvalResult], EvalResult]`, *optional*):
            List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided,
            `model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`.
        language (`Union[str, List[str]]`, *optional*):
            Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or
            639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`.
        library_name (`str`, *optional*):
            Name of library used by this model. Example: keras or any library from
            https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts.
            Defaults to None.
        license (`str`, *optional*):
            License of this model. Example: apache-2.0 or any license from
            https://huggingface.co/docs/hub/repositories-licenses. Defaults to None.
        license_name (`str`, *optional*):
            Name of the license of this model. Defaults to None. To be used in conjunction with `license_link`.
            Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a name. In that case, use `license` instead.
        license_link (`str`, *optional*):
            Link to the license of this model. Defaults to None. To be used in conjunction with `license_name`.
            Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a link. In that case, use `license` instead.
        metrics (`List[str]`, *optional*):
            List of metrics used to evaluate this model. Should be a metric name that can be found
            at https://hf.co/metrics. Example: 'accuracy'. Defaults to None.
        model_name (`str`, *optional*):
            A name for this model. It is used along with
            `eval_results` to construct the `model-index` within the card's metadata. The name
            you supply here is what will be used on PapersWithCode's leaderboards. If None is provided
            then the repo name is used as a default. Defaults to None.
        tags (`List[str]`, *optional*):
            List of tags to add to your model that can be used when filtering on the Hugging
            Face Hub. Defaults to None.
        ignore_metadata_errors (`str`):
            If True, errors while parsing the metadata section will be ignored. Some information might be lost during
            the process. Use it at your own risk.
        kwargs (`dict`, *optional*):
            Additional metadata that will be added to the model card. Defaults to None.

    Example:
        ```python
        >>> from huggingface_hub import ModelCardData
        >>> card_data = ModelCardData(
        ...     language="en",
        ...     license="mit",
        ...     library_name="timm",
        ...     tags=['image-classification', 'resnet'],
        ... )
        >>> card_data.to_dict()
        {'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']}

        ```
    """

    def __init__(
        self,
        *,
        base_model: Optional[Union[str, List[str]]] = None,
        datasets: Optional[List[str]] = None,
        eval_results: Optional[List[EvalResult]] = None,
        language: Optional[Union[str, List[str]]] = None,
        library_name: Optional[str] = None,
        license: Optional[str] = None,
        license_name: Optional[str] = None,
        license_link: Optional[str] = None,
        metrics: Optional[List[str]] = None,
        model_name: Optional[str] = None,
        pipeline_tag: Optional[str] = None,
        tags: Optional[List[str]] = None,
        ignore_metadata_errors: bool = False,
        **kwargs,
    ):
        self.base_model = base_model
        self.datasets = datasets
        self.eval_results = eval_results
        self.language = language
        self.library_name = library_name
        self.license = license
        self.license_name = license_name
        self.license_link = license_link
        self.metrics = metrics
        self.model_name = model_name
        self.pipeline_tag = pipeline_tag
        self.tags = _to_unique_list(tags)

        model_index = kwargs.pop("model-index", None)
        if model_index:
            try:
                model_name, eval_results = model_index_to_eval_results(model_index)
                self.model_name = model_name
                self.eval_results = eval_results
            except (KeyError, TypeError) as error:
                if ignore_metadata_errors:
                    logger.warning("Invalid model-index. Not loading eval results into CardData.")
                else:
                    raise ValueError(
                        f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass"
                        " `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:"
                        " some information will be lost. Use it at your own risk."
                    )

        super().__init__(**kwargs)

        if self.eval_results:
            if isinstance(self.eval_results, EvalResult):
                self.eval_results = [self.eval_results]
            if self.model_name is None:
                raise ValueError("Passing `eval_results` requires `model_name` to be set.")

    def _to_dict(self, data_dict):
        """Format the internal data dict. In this case, we convert eval results to a valid model index"""
        if self.eval_results is not None:
            data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results)
            del data_dict["eval_results"], data_dict["model_name"]


class DatasetCardData(CardData):
    """Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md

    Args:
        language (`List[str]`, *optional*):
            Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or
            639-3 code (two/three letters), or a special value like "code", "multilingual".
        license (`Union[str, List[str]]`, *optional*):
            License(s) of this dataset. Example: apache-2.0 or any license from
            https://huggingface.co/docs/hub/repositories-licenses.
        annotations_creators (`Union[str, List[str]]`, *optional*):
            How the annotations for the dataset were created.
            Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'.
        language_creators (`Union[str, List[str]]`, *optional*):
            How the text-based data in the dataset was created.
            Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other'
        multilinguality (`Union[str, List[str]]`, *optional*):
            Whether the dataset is multilingual.
            Options are: 'monolingual', 'multilingual', 'translation', 'other'.
        size_categories (`Union[str, List[str]]`, *optional*):
            The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K',
            '100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'.
        source_datasets (`List[str]]`, *optional*):
            Indicates whether the dataset is an original dataset or extended from another existing dataset.
            Options are: 'original' and 'extended'.
        task_categories (`Union[str, List[str]]`, *optional*):
            What categories of task does the dataset support?
        task_ids (`Union[str, List[str]]`, *optional*):
            What specific tasks does the dataset support?
        paperswithcode_id (`str`, *optional*):
            ID of the dataset on PapersWithCode.
        pretty_name (`str`, *optional*):
            A more human-readable name for the dataset. (ex. "Cats vs. Dogs")
        train_eval_index (`Dict`, *optional*):
            A dictionary that describes the necessary spec for doing evaluation on the Hub.
            If not provided, it will be gathered from the 'train-eval-index' key of the kwargs.
        config_names (`Union[str, List[str]]`, *optional*):
            A list of the available dataset configs for the dataset.
    """

    def __init__(
        self,
        *,
        language: Optional[Union[str, List[str]]] = None,
        license: Optional[Union[str, List[str]]] = None,
        annotations_creators: Optional[Union[str, List[str]]] = None,
        language_creators: Optional[Union[str, List[str]]] = None,
        multilinguality: Optional[Union[str, List[str]]] = None,
        size_categories: Optional[Union[str, List[str]]] = None,
        source_datasets: Optional[List[str]] = None,
        task_categories: Optional[Union[str, List[str]]] = None,
        task_ids: Optional[Union[str, List[str]]] = None,
        paperswithcode_id: Optional[str] = None,
        pretty_name: Optional[str] = None,
        train_eval_index: Optional[Dict] = None,
        config_names: Optional[Union[str, List[str]]] = None,
        ignore_metadata_errors: bool = False,
        **kwargs,
    ):
        self.annotations_creators = annotations_creators
        self.language_creators = language_creators
        self.language = language
        self.license = license
        self.multilinguality = multilinguality
        self.size_categories = size_categories
        self.source_datasets = source_datasets
        self.task_categories = task_categories
        self.task_ids = task_ids
        self.paperswithcode_id = paperswithcode_id
        self.pretty_name = pretty_name
        self.config_names = config_names

        # TODO - maybe handle this similarly to EvalResult?
        self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None)
        super().__init__(**kwargs)

    def _to_dict(self, data_dict):
        data_dict["train-eval-index"] = data_dict.pop("train_eval_index")


class SpaceCardData(CardData):
    """Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md

    To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference.

    Args:
        title (`str`, *optional*)
            Title of the Space.
        sdk (`str`, *optional*)
            SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`).
        sdk_version (`str`, *optional*)
            Version of the used SDK (if Gradio/Streamlit sdk).
        python_version (`str`, *optional*)
            Python version used in the Space (if Gradio/Streamlit sdk).
        app_file (`str`, *optional*)
            Path to your main application file (which contains either gradio or streamlit Python code, or static html code).
            Path is relative to the root of the repository.
        app_port (`str`, *optional*)
            Port on which your application is running. Used only if sdk is `docker`.
        license (`str`, *optional*)
            License of this model. Example: apache-2.0 or any license from
            https://huggingface.co/docs/hub/repositories-licenses.
        duplicated_from (`str`, *optional*)
            ID of the original Space if this is a duplicated Space.
        models (List[`str`], *optional*)
            List of models related to this Space. Should be a dataset ID found on https://hf.co/models.
        datasets (`List[str]`, *optional*)
            List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets.
        tags (`List[str]`, *optional*)
            List of tags to add to your Space that can be used when filtering on the Hub.
        ignore_metadata_errors (`str`):
            If True, errors while parsing the metadata section will be ignored. Some information might be lost during
            the process. Use it at your own risk.
        kwargs (`dict`, *optional*):
            Additional metadata that will be added to the space card.

    Example:
        ```python
        >>> from huggingface_hub import SpaceCardData
        >>> card_data = SpaceCardData(
        ...     title="Dreambooth Training",
        ...     license="mit",
        ...     sdk="gradio",
        ...     duplicated_from="multimodalart/dreambooth-training"
        ... )
        >>> card_data.to_dict()
        {'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'}
        ```
    """

    def __init__(
        self,
        *,
        title: Optional[str] = None,
        sdk: Optional[str] = None,
        sdk_version: Optional[str] = None,
        python_version: Optional[str] = None,
        app_file: Optional[str] = None,
        app_port: Optional[int] = None,
        license: Optional[str] = None,
        duplicated_from: Optional[str] = None,
        models: Optional[List[str]] = None,
        datasets: Optional[List[str]] = None,
        tags: Optional[List[str]] = None,
        ignore_metadata_errors: bool = False,
        **kwargs,
    ):
        self.title = title
        self.sdk = sdk
        self.sdk_version = sdk_version
        self.python_version = python_version
        self.app_file = app_file
        self.app_port = app_port
        self.license = license
        self.duplicated_from = duplicated_from
        self.models = models
        self.datasets = datasets
        self.tags = _to_unique_list(tags)
        super().__init__(**kwargs)


def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]:
    """Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects.

    A detailed spec of the model index can be found here:
    https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1

    Args:
        model_index (`List[Dict[str, Any]]`):
            A model index data structure, likely coming from a README.md file on the
            Hugging Face Hub.

    Returns:
        model_name (`str`):
            The name of the model as found in the model index. This is used as the
            identifier for the model on leaderboards like PapersWithCode.
        eval_results (`List[EvalResult]`):
            A list of `huggingface_hub.EvalResult` objects containing the metrics
            reported in the provided model_index.

    Example:
        ```python
        >>> from huggingface_hub.repocard_data import model_index_to_eval_results
        >>> # Define a minimal model index
        >>> model_index = [
        ...     {
        ...         "name": "my-cool-model",
        ...         "results": [
        ...             {
        ...                 "task": {
        ...                     "type": "image-classification"
        ...                 },
        ...                 "dataset": {
        ...                     "type": "beans",
        ...                     "name": "Beans"
        ...                 },
        ...                 "metrics": [
        ...                     {
        ...                         "type": "accuracy",
        ...                         "value": 0.9
        ...                     }
        ...                 ]
        ...             }
        ...         ]
        ...     }
        ... ]
        >>> model_name, eval_results = model_index_to_eval_results(model_index)
        >>> model_name
        'my-cool-model'
        >>> eval_results[0].task_type
        'image-classification'
        >>> eval_results[0].metric_type
        'accuracy'

        ```
    """

    eval_results = []
    for elem in model_index:
        name = elem["name"]
        results = elem["results"]
        for result in results:
            task_type = result["task"]["type"]
            task_name = result["task"].get("name")
            dataset_type = result["dataset"]["type"]
            dataset_name = result["dataset"]["name"]
            dataset_config = result["dataset"].get("config")
            dataset_split = result["dataset"].get("split")
            dataset_revision = result["dataset"].get("revision")
            dataset_args = result["dataset"].get("args")
            source_name = result.get("source", {}).get("name")
            source_url = result.get("source", {}).get("url")

            for metric in result["metrics"]:
                metric_type = metric["type"]
                metric_value = metric["value"]
                metric_name = metric.get("name")
                metric_args = metric.get("args")
                metric_config = metric.get("config")
                verified = metric.get("verified")
                verify_token = metric.get("verifyToken")

                eval_result = EvalResult(
                    task_type=task_type,  # Required
                    dataset_type=dataset_type,  # Required
                    dataset_name=dataset_name,  # Required
                    metric_type=metric_type,  # Required
                    metric_value=metric_value,  # Required
                    task_name=task_name,
                    dataset_config=dataset_config,
                    dataset_split=dataset_split,
                    dataset_revision=dataset_revision,
                    dataset_args=dataset_args,
                    metric_name=metric_name,
                    metric_args=metric_args,
                    metric_config=metric_config,
                    verified=verified,
                    verify_token=verify_token,
                    source_name=source_name,
                    source_url=source_url,
                )
                eval_results.append(eval_result)
    return name, eval_results


def _remove_none(obj):
    """
    Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778
    """
    if isinstance(obj, (list, tuple, set)):
        return type(obj)(_remove_none(x) for x in obj if x is not None)
    elif isinstance(obj, dict):
        return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None)
    else:
        return obj


def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]:
    """Takes in given model name and list of `huggingface_hub.EvalResult` and returns a
    valid model-index that will be compatible with the format expected by the
    Hugging Face Hub.

    Args:
        model_name (`str`):
            Name of the model (ex. "my-cool-model"). This is used as the identifier
            for the model on leaderboards like PapersWithCode.
        eval_results (`List[EvalResult]`):
            List of `huggingface_hub.EvalResult` objects containing the metrics to be
            reported in the model-index.

    Returns:
        model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index.

    Example:
        ```python
        >>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult
        >>> # Define minimal eval_results
        >>> eval_results = [
        ...     EvalResult(
        ...         task_type="image-classification",  # Required
        ...         dataset_type="beans",  # Required
        ...         dataset_name="Beans",  # Required
        ...         metric_type="accuracy",  # Required
        ...         metric_value=0.9,  # Required
        ...     )
        ... ]
        >>> eval_results_to_model_index("my-cool-model", eval_results)
        [{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}]

        ```
    """

    # Metrics are reported on a unique task-and-dataset basis.
    # Here, we make a map of those pairs and the associated EvalResults.
    task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list)
    for eval_result in eval_results:
        task_and_ds_types_map[eval_result.unique_identifier].append(eval_result)

    # Use the map from above to generate the model index data.
    model_index_data = []
    for results in task_and_ds_types_map.values():
        # All items from `results` share same metadata
        sample_result = results[0]
        data = {
            "task": {
                "type": sample_result.task_type,
                "name": sample_result.task_name,
            },
            "dataset": {
                "name": sample_result.dataset_name,
                "type": sample_result.dataset_type,
                "config": sample_result.dataset_config,
                "split": sample_result.dataset_split,
                "revision": sample_result.dataset_revision,
                "args": sample_result.dataset_args,
            },
            "metrics": [
                {
                    "type": result.metric_type,
                    "value": result.metric_value,
                    "name": result.metric_name,
                    "config": result.metric_config,
                    "args": result.metric_args,
                    "verified": result.verified,
                    "verifyToken": result.verify_token,
                }
                for result in results
            ],
        }
        if sample_result.source_url is not None:
            source = {
                "url": sample_result.source_url,
            }
            if sample_result.source_name is not None:
                source["name"] = sample_result.source_name
            data["source"] = source
        model_index_data.append(data)

    # TODO - Check if there cases where this list is longer than one?
    # Finally, the model index itself is list of dicts.
    model_index = [
        {
            "name": model_name,
            "results": model_index_data,
        }
    ]
    return _remove_none(model_index)


def _to_unique_list(tags: Optional[List[str]]) -> Optional[List[str]]:
    if tags is None:
        return tags
    unique_tags = []  # make tags unique + keep order explicitly
    for tag in tags:
        if tag not in unique_tags:
            unique_tags.append(tag)
    return unique_tags