File size: 8,931 Bytes
0ad74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""Utility function for gradio/external.py, designed for internal use."""

from __future__ import annotations

import base64
import math
import re
import warnings

import httpx
import yaml
from huggingface_hub import HfApi, ImageClassificationOutputElement, InferenceClient

from gradio import components


def get_model_info(model_name, hf_token=None):
    hf_api = HfApi(token=hf_token)
    print(f"Fetching model from: https://huggingface.co/{model_name}")

    model_info = hf_api.model_info(model_name)
    pipeline = model_info.pipeline_tag
    tags = model_info.tags
    return pipeline, tags


##################
# Helper functions for processing tabular data
##################


def get_tabular_examples(model_name: str) -> dict[str, list[float]]:
    readme = httpx.get(f"https://huggingface.co/{model_name}/resolve/main/README.md")
    if readme.status_code != 200:
        warnings.warn(f"Cannot load examples from README for {model_name}", UserWarning)
        example_data = {}
    else:
        yaml_regex = re.search(
            "(?:^|[\r\n])---[\n\r]+([\\S\\s]*?)[\n\r]+---([\n\r]|$)", readme.text
        )
        if yaml_regex is None:
            example_data = {}
        else:
            example_yaml = next(
                yaml.safe_load_all(readme.text[: yaml_regex.span()[-1]])
            )
            example_data = example_yaml.get("widget", {}).get("structuredData", {})
    if not example_data:
        raise ValueError(
            f"No example data found in README.md of {model_name} - Cannot build gradio demo. "
            "See the README.md here: https://huggingface.co/scikit-learn/tabular-playground/blob/main/README.md "
            "for a reference on how to provide example data to your model."
        )
    # replace nan with string NaN for inference Endpoints
    for data in example_data.values():
        for i, val in enumerate(data):
            if isinstance(val, float) and math.isnan(val):
                data[i] = "NaN"
    return example_data


def cols_to_rows(
    example_data: dict[str, list[float | str] | None],
) -> tuple[list[str], list[list[float]]]:
    headers = list(example_data.keys())
    n_rows = max(len(example_data[header] or []) for header in headers)
    data = []
    for row_index in range(n_rows):
        row_data = []
        for header in headers:
            col = example_data[header] or []
            if row_index >= len(col):
                row_data.append("NaN")
            else:
                row_data.append(col[row_index])
        data.append(row_data)
    return headers, data


def rows_to_cols(incoming_data: dict) -> dict[str, dict[str, dict[str, list[str]]]]:
    data_column_wise = {}
    for i, header in enumerate(incoming_data["headers"]):
        data_column_wise[header] = [str(row[i]) for row in incoming_data["data"]]
    return {"inputs": {"data": data_column_wise}}


##################
# Helper functions for processing other kinds of data
##################


def postprocess_label(scores: list[ImageClassificationOutputElement]) -> dict:
    return {c.label: c.score for c in scores}


def postprocess_mask_tokens(scores: list[dict[str, str | float]]) -> dict:
    return {c["token_str"]: c["score"] for c in scores}


def postprocess_question_answering(answer: dict) -> tuple[str, dict]:
    return answer["answer"], {answer["answer"]: answer["score"]}


def postprocess_visual_question_answering(scores: list[dict[str, str | float]]) -> dict:
    return {c["answer"]: c["score"] for c in scores}


def zero_shot_classification_wrapper(client: InferenceClient):
    def zero_shot_classification_inner(input: str, labels: str, multi_label: bool):
        return client.zero_shot_classification(
            input, labels.split(","), multi_label=multi_label
        )

    return zero_shot_classification_inner


def sentence_similarity_wrapper(client: InferenceClient):
    def sentence_similarity_inner(input: str, sentences: str):
        return client.sentence_similarity(input, sentences.split("\n"))

    return sentence_similarity_inner


def text_generation_wrapper(client: InferenceClient):
    def text_generation_inner(input: str):
        return input + client.text_generation(input)

    return text_generation_inner


def conversational_wrapper(client: InferenceClient):
    def chat_fn(message, history):
        if not history:
            history = []
        history.append({"role": "user", "content": message})
        result = client.chat_completion(history)
        return result.choices[0].message.content

    return chat_fn


def encode_to_base64(r: httpx.Response) -> str:
    # Handles the different ways HF API returns the prediction
    base64_repr = base64.b64encode(r.content).decode("utf-8")
    data_prefix = ";base64,"
    # Case 1: base64 representation already includes data prefix
    if data_prefix in base64_repr:
        return base64_repr
    else:
        content_type = r.headers.get("content-type")
        # Case 2: the data prefix is a key in the response
        if content_type == "application/json":
            try:
                data = r.json()[0]
                content_type = data["content-type"]
                base64_repr = data["blob"]
            except KeyError as ke:
                raise ValueError(
                    "Cannot determine content type returned by external API."
                ) from ke
        # Case 3: the data prefix is included in the response headers
        else:
            pass
        new_base64 = f"data:{content_type};base64,{base64_repr}"
        return new_base64


def format_ner_list(input_string: str, ner_groups: list[dict[str, str | int]]):
    if len(ner_groups) == 0:
        return [(input_string, None)]

    output = []
    end = 0
    prev_end = 0

    for group in ner_groups:
        entity, start, end = group["entity_group"], group["start"], group["end"]
        output.append((input_string[prev_end:start], None))
        output.append((input_string[start:end], entity))
        prev_end = end

    output.append((input_string[end:], None))
    return output


def token_classification_wrapper(client: InferenceClient):
    def token_classification_inner(input: str):
        ner_list = client.token_classification(input)
        return format_ner_list(input, ner_list)  # type: ignore

    return token_classification_inner


def object_detection_wrapper(client: InferenceClient):
    def object_detection_inner(input: str):
        annotations = client.object_detection(input)
        formatted_annotations = [
            (
                (
                    a["box"]["xmin"],
                    a["box"]["ymin"],
                    a["box"]["xmax"],
                    a["box"]["ymax"],
                ),
                a["label"],
            )
            for a in annotations
        ]
        return (input, formatted_annotations)

    return object_detection_inner


def chatbot_preprocess(text, state):
    if not state:
        return text, [], []
    return (
        text,
        state["conversation"]["generated_responses"],
        state["conversation"]["past_user_inputs"],
    )


def chatbot_postprocess(response):
    chatbot_history = list(
        zip(
            response["conversation"]["past_user_inputs"],
            response["conversation"]["generated_responses"],
            strict=False,
        )
    )
    return chatbot_history, response


def tabular_wrapper(client: InferenceClient, pipeline: str):
    # This wrapper is needed to handle an issue in the InfereneClient where the model name is not
    # automatically loaded when using the tabular_classification and tabular_regression methods.
    # See: https://github.com/huggingface/huggingface_hub/issues/2015
    def tabular_inner(data):
        if pipeline not in ("tabular_classification", "tabular_regression"):
            raise TypeError(f"pipeline type {pipeline!r} not supported")
        assert client.model  # noqa: S101
        if pipeline == "tabular_classification":
            return client.tabular_classification(data, model=client.model)
        else:
            return client.tabular_regression(data, model=client.model)

    return tabular_inner


##################
# Helper function for cleaning up an Interface loaded from HF Spaces
##################


def streamline_spaces_interface(config: dict) -> dict:
    """Streamlines the interface config dictionary to remove unnecessary keys."""
    config["inputs"] = [
        components.get_component_instance(component)
        for component in config["input_components"]
    ]
    config["outputs"] = [
        components.get_component_instance(component)
        for component in config["output_components"]
    ]
    parameters = {
        "article",
        "description",
        "flagging_options",
        "inputs",
        "outputs",
        "title",
    }
    config = {k: config[k] for k in parameters}
    return config