File size: 8,931 Bytes
0ad74ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
"""Utility function for gradio/external.py, designed for internal use."""
from __future__ import annotations
import base64
import math
import re
import warnings
import httpx
import yaml
from huggingface_hub import HfApi, ImageClassificationOutputElement, InferenceClient
from gradio import components
def get_model_info(model_name, hf_token=None):
hf_api = HfApi(token=hf_token)
print(f"Fetching model from: https://huggingface.co/{model_name}")
model_info = hf_api.model_info(model_name)
pipeline = model_info.pipeline_tag
tags = model_info.tags
return pipeline, tags
##################
# Helper functions for processing tabular data
##################
def get_tabular_examples(model_name: str) -> dict[str, list[float]]:
readme = httpx.get(f"https://huggingface.co/{model_name}/resolve/main/README.md")
if readme.status_code != 200:
warnings.warn(f"Cannot load examples from README for {model_name}", UserWarning)
example_data = {}
else:
yaml_regex = re.search(
"(?:^|[\r\n])---[\n\r]+([\\S\\s]*?)[\n\r]+---([\n\r]|$)", readme.text
)
if yaml_regex is None:
example_data = {}
else:
example_yaml = next(
yaml.safe_load_all(readme.text[: yaml_regex.span()[-1]])
)
example_data = example_yaml.get("widget", {}).get("structuredData", {})
if not example_data:
raise ValueError(
f"No example data found in README.md of {model_name} - Cannot build gradio demo. "
"See the README.md here: https://huggingface.co/scikit-learn/tabular-playground/blob/main/README.md "
"for a reference on how to provide example data to your model."
)
# replace nan with string NaN for inference Endpoints
for data in example_data.values():
for i, val in enumerate(data):
if isinstance(val, float) and math.isnan(val):
data[i] = "NaN"
return example_data
def cols_to_rows(
example_data: dict[str, list[float | str] | None],
) -> tuple[list[str], list[list[float]]]:
headers = list(example_data.keys())
n_rows = max(len(example_data[header] or []) for header in headers)
data = []
for row_index in range(n_rows):
row_data = []
for header in headers:
col = example_data[header] or []
if row_index >= len(col):
row_data.append("NaN")
else:
row_data.append(col[row_index])
data.append(row_data)
return headers, data
def rows_to_cols(incoming_data: dict) -> dict[str, dict[str, dict[str, list[str]]]]:
data_column_wise = {}
for i, header in enumerate(incoming_data["headers"]):
data_column_wise[header] = [str(row[i]) for row in incoming_data["data"]]
return {"inputs": {"data": data_column_wise}}
##################
# Helper functions for processing other kinds of data
##################
def postprocess_label(scores: list[ImageClassificationOutputElement]) -> dict:
return {c.label: c.score for c in scores}
def postprocess_mask_tokens(scores: list[dict[str, str | float]]) -> dict:
return {c["token_str"]: c["score"] for c in scores}
def postprocess_question_answering(answer: dict) -> tuple[str, dict]:
return answer["answer"], {answer["answer"]: answer["score"]}
def postprocess_visual_question_answering(scores: list[dict[str, str | float]]) -> dict:
return {c["answer"]: c["score"] for c in scores}
def zero_shot_classification_wrapper(client: InferenceClient):
def zero_shot_classification_inner(input: str, labels: str, multi_label: bool):
return client.zero_shot_classification(
input, labels.split(","), multi_label=multi_label
)
return zero_shot_classification_inner
def sentence_similarity_wrapper(client: InferenceClient):
def sentence_similarity_inner(input: str, sentences: str):
return client.sentence_similarity(input, sentences.split("\n"))
return sentence_similarity_inner
def text_generation_wrapper(client: InferenceClient):
def text_generation_inner(input: str):
return input + client.text_generation(input)
return text_generation_inner
def conversational_wrapper(client: InferenceClient):
def chat_fn(message, history):
if not history:
history = []
history.append({"role": "user", "content": message})
result = client.chat_completion(history)
return result.choices[0].message.content
return chat_fn
def encode_to_base64(r: httpx.Response) -> str:
# Handles the different ways HF API returns the prediction
base64_repr = base64.b64encode(r.content).decode("utf-8")
data_prefix = ";base64,"
# Case 1: base64 representation already includes data prefix
if data_prefix in base64_repr:
return base64_repr
else:
content_type = r.headers.get("content-type")
# Case 2: the data prefix is a key in the response
if content_type == "application/json":
try:
data = r.json()[0]
content_type = data["content-type"]
base64_repr = data["blob"]
except KeyError as ke:
raise ValueError(
"Cannot determine content type returned by external API."
) from ke
# Case 3: the data prefix is included in the response headers
else:
pass
new_base64 = f"data:{content_type};base64,{base64_repr}"
return new_base64
def format_ner_list(input_string: str, ner_groups: list[dict[str, str | int]]):
if len(ner_groups) == 0:
return [(input_string, None)]
output = []
end = 0
prev_end = 0
for group in ner_groups:
entity, start, end = group["entity_group"], group["start"], group["end"]
output.append((input_string[prev_end:start], None))
output.append((input_string[start:end], entity))
prev_end = end
output.append((input_string[end:], None))
return output
def token_classification_wrapper(client: InferenceClient):
def token_classification_inner(input: str):
ner_list = client.token_classification(input)
return format_ner_list(input, ner_list) # type: ignore
return token_classification_inner
def object_detection_wrapper(client: InferenceClient):
def object_detection_inner(input: str):
annotations = client.object_detection(input)
formatted_annotations = [
(
(
a["box"]["xmin"],
a["box"]["ymin"],
a["box"]["xmax"],
a["box"]["ymax"],
),
a["label"],
)
for a in annotations
]
return (input, formatted_annotations)
return object_detection_inner
def chatbot_preprocess(text, state):
if not state:
return text, [], []
return (
text,
state["conversation"]["generated_responses"],
state["conversation"]["past_user_inputs"],
)
def chatbot_postprocess(response):
chatbot_history = list(
zip(
response["conversation"]["past_user_inputs"],
response["conversation"]["generated_responses"],
strict=False,
)
)
return chatbot_history, response
def tabular_wrapper(client: InferenceClient, pipeline: str):
# This wrapper is needed to handle an issue in the InfereneClient where the model name is not
# automatically loaded when using the tabular_classification and tabular_regression methods.
# See: https://github.com/huggingface/huggingface_hub/issues/2015
def tabular_inner(data):
if pipeline not in ("tabular_classification", "tabular_regression"):
raise TypeError(f"pipeline type {pipeline!r} not supported")
assert client.model # noqa: S101
if pipeline == "tabular_classification":
return client.tabular_classification(data, model=client.model)
else:
return client.tabular_regression(data, model=client.model)
return tabular_inner
##################
# Helper function for cleaning up an Interface loaded from HF Spaces
##################
def streamline_spaces_interface(config: dict) -> dict:
"""Streamlines the interface config dictionary to remove unnecessary keys."""
config["inputs"] = [
components.get_component_instance(component)
for component in config["input_components"]
]
config["outputs"] = [
components.get_component_instance(component)
for component in config["output_components"]
]
parameters = {
"article",
"description",
"flagging_options",
"inputs",
"outputs",
"title",
}
config = {k: config[k] for k in parameters}
return config
|