File size: 197,566 Bytes
9382e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import copy
import gc
import inspect
import os
import os.path
import pickle
import random
import re
import tempfile
import warnings
from collections import defaultdict
from typing import Dict, List, Tuple
import numpy as np
from parameterized import parameterized
from pytest import mark
import transformers
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSequenceClassification,
PretrainedConfig,
PreTrainedModel,
is_torch_available,
logging,
set_seed,
)
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import (
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
MODEL_FOR_BACKBONE_MAPPING_NAMES,
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
MODEL_FOR_MASKED_LM_MAPPING_NAMES,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES,
MODEL_MAPPING_NAMES,
)
from transformers.testing_utils import (
CaptureLogger,
is_flaky,
is_pt_flax_cross_test,
is_pt_tf_cross_test,
require_accelerate,
require_bitsandbytes,
require_flash_attn,
require_safetensors,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_sdpa,
slow,
torch_device,
)
from transformers.utils import (
CONFIG_NAME,
GENERATION_CONFIG_NAME,
SAFE_WEIGHTS_NAME,
is_accelerate_available,
is_flax_available,
is_tf_available,
is_torch_bf16_available_on_device,
is_torch_fp16_available_on_device,
is_torch_fx_available,
is_torch_sdpa_available,
)
from transformers.utils.generic import ContextManagers, ModelOutput
if is_accelerate_available():
from accelerate.utils import compute_module_sizes
if is_torch_available():
import torch
import torch.nn.functional as F
from safetensors.torch import load_file as safe_load_file
from safetensors.torch import save_file as safe_save_file
from torch import nn
from transformers import MODEL_MAPPING, AdaptiveEmbedding
from transformers.modeling_utils import load_state_dict, no_init_weights
from transformers.pytorch_utils import id_tensor_storage
if is_tf_available():
import tensorflow as tf
if is_flax_available():
import jax.numpy as jnp
from tests.test_modeling_flax_utils import check_models_equal
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_fx_available():
from transformers.utils.fx import _FX_SUPPORTED_MODELS_WITH_KV_CACHE, symbolic_trace
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(configs_no_init, key, 1e-10)
if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
setattr(configs_no_init, key, no_init_subconfig)
return configs_no_init
def _mock_init_weights(self, module):
for name, param in module.named_parameters(recurse=False):
# Use the first letter of the name to get a value and go from a <> -13 to z <> 12
value = ord(name[0].lower()) - 110
param.data.fill_(value)
def _mock_all_init_weights(self):
# Prune heads if needed
if self.config.pruned_heads:
self.prune_heads(self.config.pruned_heads)
import transformers.modeling_utils
if transformers.modeling_utils._init_weights:
for module in self.modules():
module._is_hf_initialized = False
# Initialize weights
self.apply(self._initialize_weights)
# Tie weights should be skipped when not initializing all weights
# since from_pretrained(...) calls tie weights anyways
self.tie_weights()
@require_torch
class ModelTesterMixin:
model_tester = None
all_model_classes = ()
all_generative_model_classes = ()
fx_compatible = False
test_torchscript = True
test_pruning = True
test_resize_embeddings = True
test_resize_position_embeddings = False
test_head_masking = True
test_mismatched_shapes = True
test_missing_keys = True
test_model_parallel = False
is_encoder_decoder = False
has_attentions = True
model_split_percents = [0.5, 0.7, 0.9]
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
inputs_dict = {
k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
if isinstance(v, torch.Tensor) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
inputs_dict.pop("attention_mask")
if return_labels:
if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
elif model_class.__name__ in [
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
]:
inputs_dict["start_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
inputs_dict["end_positions"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class.__name__ in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
]:
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class.__name__ in [
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
*get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES),
]:
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
num_patches = self.model_tester.image_size // self.model_tester.patch_size
inputs_dict["bool_masked_pos"] = torch.zeros(
(self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
)
elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
inputs_dict["labels"] = torch.zeros(
[self.model_tester.batch_size, height, width], device=torch_device
).long()
return inputs_dict
def test_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_save_load(out1, out2):
# make sure we don't have nans
out_2 = out2.cpu().numpy()
out_2[np.isnan(out_2)] = 0
out_1 = out1.cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
# the config file (and the generation config file, if it can generate) should be saved
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
self.assertEqual(
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
)
model = model_class.from_pretrained(tmpdirname)
model.to(torch_device)
with torch.no_grad():
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_save_load(tensor1, tensor2)
else:
check_save_load(first, second)
def test_from_pretrained_no_checkpoint(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
state_dict = model.state_dict()
new_model = model_class.from_pretrained(
pretrained_model_name_or_path=None, config=config, state_dict=state_dict
)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
def test_keep_in_fp32_modules(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._keep_in_fp32_modules is None:
return
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16)
for name, param in model.named_parameters():
if any(n in model_class._keep_in_fp32_modules for n in name.split(".")):
self.assertTrue(param.dtype == torch.float32)
else:
self.assertTrue(param.dtype == torch.float16, name)
def test_save_load_keys_to_ignore_on_save(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
_keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
if _keys_to_ignore_on_save is None:
continue
# check the keys are in the original state_dict
for k in _keys_to_ignore_on_save:
self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
# check that certain keys didn't get saved with the model
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
output_model_file = os.path.join(tmpdirname, SAFE_WEIGHTS_NAME)
state_dict_saved = safe_load_file(output_model_file)
for k in _keys_to_ignore_on_save:
self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
# Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
load_result = model.load_state_dict(state_dict_saved, strict=False)
keys_to_ignore = set(model._keys_to_ignore_on_save)
if hasattr(model, "_tied_weights_keys"):
keys_to_ignore.update(set(model._tied_weights_keys))
self.assertTrue(len(load_result.missing_keys) == 0 or set(load_result.missing_keys) == keys_to_ignore)
self.assertTrue(len(load_result.unexpected_keys) == 0)
def test_gradient_checkpointing_backward_compatibility(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class.supports_gradient_checkpointing:
continue
config.gradient_checkpointing = True
model = model_class(config)
self.assertTrue(model.is_gradient_checkpointing)
def test_gradient_checkpointing_enable_disable(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class.supports_gradient_checkpointing:
continue
# at init model should have gradient checkpointing disabled
model = model_class(config)
self.assertFalse(model.is_gradient_checkpointing)
# check enable works
model.gradient_checkpointing_enable()
self.assertTrue(model.is_gradient_checkpointing)
# Loop over all modules and check that relevant modules have gradient_checkpointing set to True
for n, m in model.named_modules():
if hasattr(m, "gradient_checkpointing"):
self.assertTrue(
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to True"
)
# check disable works
model.gradient_checkpointing_disable()
self.assertFalse(model.is_gradient_checkpointing)
# Loop over all modules and check that relevant modules have gradient_checkpointing set to False
for n, m in model.named_modules():
if hasattr(m, "gradient_checkpointing"):
self.assertFalse(
m.gradient_checkpointing, f"Module {n} does not have gradient_checkpointing set to False"
)
@is_flaky(description="low likelihood of failure, reason not yet discovered")
def test_save_load_fast_init_from_base(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if config.__class__ not in MODEL_MAPPING:
return
base_class = MODEL_MAPPING[config.__class__]
if isinstance(base_class, tuple):
base_class = base_class[0]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
# make a copy of model class to not break future tests
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
class CopyClass(model_class):
pass
model_class_copy = CopyClass
# make sure that all keys are expected for test
model_class_copy._keys_to_ignore_on_load_missing = []
# make init deterministic, but make sure that
# non-initialized weights throw errors nevertheless
model_class_copy._init_weights = _mock_init_weights
model_class_copy.init_weights = _mock_all_init_weights
model = base_class(config)
state_dict = model.state_dict()
# this will often delete a single weight of a multi-weight module
# to test an edge case
random_key_to_del = random.choice(list(state_dict.keys()))
del state_dict[random_key_to_del]
# check that certain keys didn't get saved with the model
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
model_fast_init = model_class_copy.from_pretrained(tmpdirname)
model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
# Before we test anything
for key in model_fast_init.state_dict().keys():
if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
else:
max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
def test_fast_init_context_manager(self):
# 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
class MyClass(PreTrainedModel):
config_class = PretrainedConfig
def __init__(self, config=None):
super().__init__(config if config is not None else PretrainedConfig())
self.linear = nn.Linear(10, 10, bias=True)
self.embedding = nn.Embedding(10, 10)
self.std = 1
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
if module.bias is not None:
module.bias.data.normal_(mean=0.0, std=self.std)
# 2. Make sure a linear layer's reset params is properly skipped:
with ContextManagers([no_init_weights(True)]):
no_init_instance = MyClass()
set_seed(0)
expected_bias = torch.tensor(
([0.2975, 0.2131, -0.1379, -0.0796, -0.3012, -0.0057, -0.2381, -0.2439, -0.0174, 0.0475])
)
init_instance = MyClass()
torch.testing.assert_close(init_instance.linear.bias, expected_bias, rtol=1e-3, atol=1e-4)
set_seed(0)
torch.testing.assert_close(
init_instance.linear.weight, nn.init.kaiming_uniform_(no_init_instance.linear.weight, np.sqrt(5))
)
# 3. Make sure weights that are not present use init_weight_ and get expected values
with tempfile.TemporaryDirectory() as tmpdirname:
state_dict = init_instance.state_dict()
del state_dict["linear.weight"]
init_instance.config.save_pretrained(tmpdirname)
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
set_seed(0)
model_fast_init = MyClass.from_pretrained(tmpdirname)
set_seed(0)
model_slow_init = MyClass.from_pretrained(tmpdirname, _fast_init=False)
for key in model_fast_init.state_dict().keys():
max_diff = torch.max(torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]))
self.assertLessEqual(max_diff.item(), 1e-3, msg=f"{key} not identical")
def test_fast_init_tied_embeddings(self):
class MyClass(PreTrainedModel):
config_class = PretrainedConfig
_tied_weights_keys = ["output_embeddings.weight"]
def __init__(self, config=None):
super().__init__(config if config is not None else PretrainedConfig())
self.input_embeddings = nn.Embedding(10, 10)
self.output_embeddings = nn.Linear(10, 10, bias=False)
self.tie_weights()
def get_output_embeddings(self):
return self.output_embeddings
def set_output_embeddings(self, output_embeddings):
self.output_embeddings = output_embeddings
def get_input_embeddings(self):
return self.input_embeddings
def set_input_embeddings(self, input_embeddings):
self.input_embeddings = input_embeddings
def _init_weights(self, module):
if module is self.output_embeddings:
raise ValueError("unnecessarily initialized tied output embedding!")
model = MyClass()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
# throws if it initializes the tied output_embeddings
MyClass.from_pretrained(tmpdirname)
def test_save_load_fast_init_to_base(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if config.__class__ not in MODEL_MAPPING:
return
base_class = MODEL_MAPPING[config.__class__]
if isinstance(base_class, tuple):
base_class = base_class[0]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
# make a copy of model class to not break future tests
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
class CopyClass(base_class):
pass
base_class_copy = CopyClass
# make sure that all keys are expected for test
base_class_copy._keys_to_ignore_on_load_missing = []
# make init deterministic, but make sure that
# non-initialized weights throw errors nevertheless
base_class_copy._init_weights = _mock_init_weights
base_class_copy.init_weights = _mock_all_init_weights
model = model_class(config)
state_dict = model.state_dict()
# this will often delete a single weight of a multi-weight module
# to test an edge case
random_key_to_del = random.choice(list(state_dict.keys()))
del state_dict[random_key_to_del]
# check that certain keys didn't get saved with the model
with tempfile.TemporaryDirectory() as tmpdirname:
model.config.save_pretrained(tmpdirname)
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
model_fast_init = base_class_copy.from_pretrained(tmpdirname)
model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)
for key in model_fast_init.state_dict().keys():
if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
max_diff = torch.max(
model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
).item()
else:
max_diff = torch.max(
torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
).item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
def test_torch_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if config.__class__ not in MODEL_MAPPING:
return
base_class = MODEL_MAPPING[config.__class__]
if isinstance(base_class, tuple):
base_class = base_class[0]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
# make a copy of model class to not break future tests
# from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
class CopyClass(base_class):
pass
base_class_copy = CopyClass
# make sure that all keys are expected for test
base_class_copy._keys_to_ignore_on_load_missing = []
# make init deterministic, but make sure that
# non-initialized weights throw errors nevertheless
base_class_copy._init_weights = _mock_init_weights
base_class_copy.init_weights = _mock_all_init_weights
model = model_class(config)
state_dict = model.state_dict()
def check_equal(loaded):
for key in state_dict.keys():
max_diff = torch.max(
state_dict()[key] ^ loaded[key]
if isinstance(state_dict[key], torch.BoolTensor)
else torch.abs(state_dict[key] - loaded[key])
).item()
self.assertLessEqual(max_diff, 1e-6, msg=f"{key} not identical")
# check that certain keys didn't get saved with the model
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pytorch_model.bin")
torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=True)
check_equal(load_state_dict(pt_checkpoint_path))
torch.save(state_dict, pt_checkpoint_path, _use_new_zipfile_serialization=False)
check_equal(load_state_dict(pt_checkpoint_path))
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model.config.is_encoder_decoder:
expected_arg_names = [
"input_ids",
"attention_mask",
"decoder_input_ids",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and self.has_attentions:
expected_arg_names = ["pixel_values", "output_hidden_states", "output_attentions", "return_dict"]
self.assertListEqual(arg_names, expected_arg_names)
elif model_class.__name__ in [*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)] and not self.has_attentions:
expected_arg_names = ["pixel_values", "output_hidden_states", "return_dict"]
self.assertListEqual(arg_names, expected_arg_names)
else:
expected_arg_names = [model.main_input_name]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_batching_equivalence(self):
"""
Tests that the model supports batching and that the output is the nearly the same for the same input in
different batch sizes.
(Why "nearly the same" not "exactly the same"? Batching uses different matmul shapes, which often leads to
different results: https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535)
"""
def get_tensor_equivalence_function(batched_input):
# models operating on continuous spaces have higher abs difference than LMs
# instead, we can rely on cos distance for image/speech models, similar to `diffusers`
if "input_ids" not in batched_input:
return lambda tensor1, tensor2: (
1.0 - F.cosine_similarity(tensor1.float().flatten(), tensor2.float().flatten(), dim=0, eps=1e-38)
)
return lambda tensor1, tensor2: torch.max(torch.abs(tensor1 - tensor2))
def recursive_check(batched_object, single_row_object, model_name, key):
if isinstance(batched_object, (list, tuple)):
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
recursive_check(batched_object_value, single_row_object_value, model_name, key)
elif isinstance(batched_object, dict):
for batched_object_value, single_row_object_value in zip(
batched_object.values(), single_row_object.values()
):
recursive_check(batched_object_value, single_row_object_value, model_name, key)
# do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
elif batched_object is None or not isinstance(batched_object, torch.Tensor):
return
elif batched_object.dim() == 0:
return
else:
# indexing the first element does not always work
# e.g. models that output similarity scores of size (N, M) would need to index [0, 0]
slice_ids = [slice(0, index) for index in single_row_object.shape]
batched_row = batched_object[slice_ids]
self.assertFalse(
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
)
self.assertFalse(
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
)
self.assertFalse(
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
)
self.assertFalse(
torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
)
self.assertTrue(
(equivalence(batched_row, single_row_object)) <= 1e-03,
msg=(
f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
f"Difference={equivalence(batched_row, single_row_object)}."
),
)
config, batched_input = self.model_tester.prepare_config_and_inputs_for_common()
equivalence = get_tensor_equivalence_function(batched_input)
for model_class in self.all_model_classes:
config.output_hidden_states = True
model_name = model_class.__name__
if hasattr(self.model_tester, "prepare_config_and_inputs_for_model_class"):
config, batched_input = self.model_tester.prepare_config_and_inputs_for_model_class(model_class)
batched_input_prepared = self._prepare_for_class(batched_input, model_class)
model = model_class(config).to(torch_device).eval()
batch_size = self.model_tester.batch_size
single_row_input = {}
for key, value in batched_input_prepared.items():
if isinstance(value, torch.Tensor) and value.shape[0] % batch_size == 0:
# e.g. musicgen has inputs of size (bs*codebooks). in most cases value.shape[0] == batch_size
single_batch_shape = value.shape[0] // batch_size
single_row_input[key] = value[:single_batch_shape]
else:
single_row_input[key] = value
with torch.no_grad():
model_batched_output = model(**batched_input_prepared)
model_row_output = model(**single_row_input)
if isinstance(model_batched_output, torch.Tensor):
model_batched_output = {"model_output": model_batched_output}
model_row_output = {"model_output": model_row_output}
for key in model_batched_output:
# DETR starts from zero-init queries to decoder, leading to cos_similarity = `nan`
if hasattr(self, "zero_init_hidden_state") and "decoder_hidden_states" in key:
model_batched_output[key] = model_batched_output[key][1:]
model_row_output[key] = model_row_output[key][1:]
recursive_check(model_batched_output[key], model_row_output[key], model_name, key)
def check_training_gradient_checkpointing(self, gradient_checkpointing_kwargs=None):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
if (
model_class.__name__
in [
*get_values(MODEL_MAPPING_NAMES),
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
]
or not model_class.supports_gradient_checkpointing
):
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
model.train()
# unfreeze additional layers
for p in model.parameters():
p.requires_grad_(True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
optimizer.step()
for k, v in model.named_parameters():
if v.requires_grad:
self.assertTrue(v.grad is not None, f"{k} in {model_class.__name__} has no gradient!")
def test_training(self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
if model_class.__name__ in [
*get_values(MODEL_MAPPING_NAMES),
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
]:
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
# Scenario - 1 default behaviour
self.check_training_gradient_checkpointing()
def test_training_gradient_checkpointing_use_reentrant(self):
# Scenario - 2 with `use_reentrant=True` - this is the default value that is used in pytorch's
# torch.utils.checkpoint.checkpoint
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": True})
def test_training_gradient_checkpointing_use_reentrant_false(self):
# Scenario - 3 with `use_reentrant=False` pytorch suggests users to use this value for
# future releases: https://pytorch.org/docs/stable/checkpoint.html
self.check_training_gradient_checkpointing(gradient_checkpointing_kwargs={"use_reentrant": False})
def test_attention_outputs(self):
if not self.has_attentions:
self.skipTest(reason="Model does not output attentions")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Question Answering model returns start_logits and end_logits
if model_class.__name__ in [
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
]:
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
@slow
def test_torchscript_simple(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self._create_and_check_torchscript(config, inputs_dict)
@slow
def test_torchscript_output_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_attentions = True
self._create_and_check_torchscript(config, inputs_dict)
@slow
def test_torchscript_output_hidden_state(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
self._create_and_check_torchscript(config, inputs_dict)
# This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
def clear_torch_jit_class_registry(self):
torch._C._jit_clear_class_registry()
torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
# torch 1.8 has no `_clear_class_state` in `torch.jit._state`
if hasattr(torch.jit._state, "_clear_class_state"):
torch.jit._state._clear_class_state()
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
for attn_implementation in ["eager", "sdpa"]:
if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
continue
configs_no_init._attn_implementation = attn_implementation
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
if model.config.is_encoder_decoder:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
main_input = inputs[main_input_name]
attention_mask = inputs["attention_mask"]
decoder_input_ids = inputs["decoder_input_ids"]
decoder_attention_mask = inputs["decoder_attention_mask"]
model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
traced_model = torch.jit.trace(
model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
)
elif "bbox" in inputs and "image" in inputs: # LayoutLMv2 requires additional inputs
input_ids = inputs["input_ids"]
bbox = inputs["bbox"]
image = inputs["image"].tensor
model(input_ids, bbox, image)
traced_model = torch.jit.trace(
model, (input_ids, bbox, image), check_trace=False
) # when traced model is checked, an error is produced due to name mangling
elif "bbox" in inputs: # Bros requires additional inputs (bbox)
input_ids = inputs["input_ids"]
bbox = inputs["bbox"]
model(input_ids, bbox)
traced_model = torch.jit.trace(
model, (input_ids, bbox), check_trace=False
) # when traced model is checked, an error is produced due to name mangling
elif (
"pixel_values" in inputs and "prompt_pixel_values" in inputs and "prompt_masks" in inputs
): # SegGpt requires additional inputs
pixel_values = inputs["pixel_values"]
prompt_pixel_values = inputs["prompt_pixel_values"]
prompt_masks = inputs["prompt_masks"]
model(pixel_values, prompt_pixel_values, prompt_masks)
traced_model = torch.jit.trace(
model, (pixel_values, prompt_pixel_values, prompt_masks), check_trace=False
) # when traced model is checked, an error is produced due to name mangling
else:
main_input = inputs[main_input_name]
if model.config._attn_implementation == "sdpa":
trace_input = {main_input_name: main_input}
if "attention_mask" in inputs:
trace_input["attention_mask"] = inputs["attention_mask"]
else:
self.skipTest("testing SDPA without attention_mask is not supported")
model(main_input, attention_mask=inputs["attention_mask"])
# example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
else:
model(main_input)
traced_model = torch.jit.trace(model, (main_input,))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
def test_torch_fx(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self._create_and_check_torch_fx_tracing(config, inputs_dict)
def test_torch_fx_output_loss(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)
def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
if not is_torch_fx_available() or not self.fx_compatible:
self.skipTest(
f"Either torch.fx is not available, or the model type {config.model_type} is not compatible with torch.fx"
)
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)
# We may want to test several inputs (various shapes, etc.).
inputs_to_test = [inputs]
if model.config.is_encoder_decoder:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
labels = inputs.get("labels", None)
input_names = [
"attention_mask",
"decoder_attention_mask",
"decoder_input_ids",
"input_features",
"input_ids",
"input_values",
]
if labels is not None:
input_names.append("labels")
else:
input_names = [
"attention_mask",
"bbox",
"input_features",
"input_ids",
"input_values",
"pixel_values",
"token_type_ids",
"visual_feats",
"visual_pos",
]
labels = inputs.get("labels", None)
start_positions = inputs.get("start_positions", None)
end_positions = inputs.get("end_positions", None)
if labels is not None:
input_names.append("labels")
if start_positions is not None:
input_names.append("start_positions")
if end_positions is not None:
input_names.append("end_positions")
if model.config.model_type in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
input_names.append("past_key_values")
# Generally model_tester.prepare_config_and_inputs_for_common seem not to generate past key values inputs.
if "past_key_values" not in inputs:
batch_size = inputs[next(iter(inputs))].shape[0]
num_heads = model.config.num_attention_heads
head_dim = model.config.hidden_size // model.config.num_attention_heads
cache_shape = (batch_size, num_heads, 0, head_dim)
empty_pkv = tuple(
(
torch.rand(cache_shape, dtype=torch.float, device=torch_device),
torch.rand(cache_shape, dtype=torch.float, device=torch_device),
)
for i in range(model.config.num_hidden_layers)
)
cache_length = 9
cache_shape = (batch_size, num_heads, cache_length, head_dim)
non_empty_pkv = tuple(
(
torch.rand(cache_shape, dtype=torch.float, device=torch_device),
torch.rand(cache_shape, dtype=torch.float, device=torch_device),
)
for i in range(model.config.num_hidden_layers)
)
inps = copy.deepcopy(inputs_to_test[0])
inputs_to_test[0]["past_key_values"] = empty_pkv
inps["past_key_values"] = non_empty_pkv
inputs_to_test.append(inps)
past_mask = torch.ones(batch_size, cache_length, device=torch_device, dtype=torch.float)
inputs_to_test[1]["attention_mask"] = torch.cat(
(past_mask, inputs_to_test[1]["attention_mask"]), dim=1
)
for inps in inputs_to_test:
filtered_inputs = {k: v for (k, v) in inps.items() if k in input_names}
input_names = list(filtered_inputs.keys())
if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
not hasattr(model.config, "problem_type") or model.config.problem_type is None
):
model.config.problem_type = "single_label_classification"
traced_model = symbolic_trace(model, input_names)
with torch.no_grad():
traced_output = traced_model(**filtered_inputs)
model_output = model(**filtered_inputs)
def flatten_output(output):
flatten = []
for x in output:
if isinstance(x, (tuple, list)):
flatten += flatten_output(x)
elif not isinstance(x, torch.Tensor):
continue
else:
flatten.append(x)
return flatten
model_output = flatten_output(model_output)
traced_output = flatten_output(traced_output)
num_outputs = len(model_output)
for i in range(num_outputs):
self.assertTrue(
torch.allclose(model_output[i], traced_output[i]),
f"traced {i}th output doesn't match model {i}th output for {model_class}",
)
# Test that the model can be serialized and restored properly
with tempfile.TemporaryDirectory() as tmp_dir_name:
pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
try:
with open(pkl_file_name, "wb") as f:
pickle.dump(traced_model, f)
with open(pkl_file_name, "rb") as f:
loaded = pickle.load(f)
except Exception as e:
self.fail(f"Couldn't serialize / deserialize the traced model: {e}")
loaded_output = loaded(**filtered_inputs)
loaded_output = flatten_output(loaded_output)
for i in range(num_outputs):
self.assertTrue(
torch.allclose(model_output[i], loaded_output[i]),
f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
def test_headmasking(self):
if not self.test_head_masking:
return
global_rng.seed(42)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
global_rng.seed()
inputs_dict["output_attentions"] = True
config.output_hidden_states = True
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
# Prepare head_mask
# Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
head_mask = torch.ones(
self.model_tester.num_hidden_layers,
self.model_tester.num_attention_heads,
device=torch_device,
)
head_mask[0, 0] = 0
head_mask[-1, :-1] = 0
head_mask.requires_grad_(requires_grad=True)
inputs = self._prepare_for_class(inputs_dict, model_class).copy()
inputs["head_mask"] = head_mask
if model.config.is_encoder_decoder:
signature = inspect.signature(model.forward)
arg_names = [*signature.parameters.keys()]
if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model
inputs["decoder_head_mask"] = head_mask
if "cross_attn_head_mask" in arg_names:
inputs["cross_attn_head_mask"] = head_mask
outputs = model(**inputs, return_dict=True)
# Test that we can get a gradient back for importance score computation
output = sum(t.sum() for t in outputs[0])
output = output.sum()
output.backward()
multihead_outputs = head_mask.grad
self.assertIsNotNone(multihead_outputs)
self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
def check_attentions_validity(attentions):
# Remove Nan
for t in attentions:
self.assertLess(
torch.sum(torch.isnan(t)), t.numel() / 4
) # Check we don't have more than 25% nans (arbitrary)
attentions = [
t.masked_fill(torch.isnan(t), 0.0) for t in attentions
] # remove them (the test is less complete)
self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
if len(attentions) > 2: # encoder-decoder models have only 2 layers in each module
self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)
if model.config.is_encoder_decoder:
check_attentions_validity(outputs.encoder_attentions)
check_attentions_validity(outputs.decoder_attentions)
check_attentions_validity(outputs.cross_attentions)
else:
check_attentions_validity(outputs.attentions)
def test_head_pruning(self):
if not self.test_pruning:
return
for model_class in self.all_model_classes:
(
config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
inputs_dict["output_attentions"] = True
config.output_hidden_states = False
model = model_class(config=config)
model.to(torch_device)
model.eval()
heads_to_prune = {
0: list(range(1, self.model_tester.num_attention_heads)),
-1: [0],
}
model.prune_heads(heads_to_prune)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], 1)
# TODO: To have this check, we will need at least 3 layers. Do we really need it?
# self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
def test_head_pruning_save_load_from_pretrained(self):
if not self.test_pruning:
return
for model_class in self.all_model_classes:
(
config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
inputs_dict["output_attentions"] = True
config.output_hidden_states = False
model = model_class(config=config)
model.to(torch_device)
model.eval()
heads_to_prune = {
0: list(range(1, self.model_tester.num_attention_heads)),
-1: [0],
}
model.prune_heads(heads_to_prune)
with tempfile.TemporaryDirectory() as temp_dir_name:
model.save_pretrained(temp_dir_name)
model = model_class.from_pretrained(temp_dir_name)
model.to(torch_device)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], 1)
# TODO: To have this check, we will need at least 3 layers. Do we really need it?
# self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
def test_head_pruning_save_load_from_config_init(self):
if not self.test_pruning:
return
for model_class in self.all_model_classes:
(
config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
inputs_dict["output_attentions"] = True
config.output_hidden_states = False
heads_to_prune = {
0: list(range(1, self.model_tester.num_attention_heads)),
-1: [0],
}
config.pruned_heads = heads_to_prune
model = model_class(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], 1)
# TODO: To have this check, we will need at least 3 layers. Do we really need it?
# self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
def test_head_pruning_integration(self):
if not self.test_pruning:
return
for model_class in self.all_model_classes:
(
config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if "head_mask" in inputs_dict:
del inputs_dict["head_mask"]
inputs_dict["output_attentions"] = True
config.output_hidden_states = False
heads_to_prune = {1: [1, 2]}
config.pruned_heads = heads_to_prune
model = model_class(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
with tempfile.TemporaryDirectory() as temp_dir_name:
model.save_pretrained(temp_dir_name)
model = model_class.from_pretrained(temp_dir_name)
model.to(torch_device)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 0)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
heads_to_prune = {0: [0], 1: [1, 2]}
model.prune_heads(heads_to_prune)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs[-1]
self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2]})
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
if hasattr(self.model_tester, "encoder_seq_length"):
seq_length = self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
seq_length = seq_length * self.model_tester.chunk_length
else:
seq_length = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
if config.is_encoder_decoder:
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
if config.is_encoder_decoder:
# Seq2Seq models
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
decoder_hidden_states = outputs.decoder_hidden_states[0]
decoder_hidden_states.retain_grad()
if self.has_attentions:
encoder_attentions = outputs.encoder_attentions[0]
encoder_attentions.retain_grad()
decoder_attentions = outputs.decoder_attentions[0]
decoder_attentions.retain_grad()
cross_attentions = outputs.cross_attentions[0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(decoder_hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(decoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
else:
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
attentions = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
def test_feed_forward_chunking(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
torch.manual_seed(0)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
torch.manual_seed(0)
config.chunk_size_feed_forward = 1
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))
def test_resize_position_vector_embeddings(self):
if not self.test_resize_position_embeddings:
return
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
max_position_embeddings = config.max_position_embeddings
# Retrieve the embeddings and clone theme
if model.config.is_encoder_decoder:
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
encoder_cloned_embeddings = encoder_model_embed.weight.clone()
decoder_cloned_embeddings = decoder_model_embed.weight.clone()
else:
model_embed = model.get_position_embeddings()
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the position embeddings with a larger max_position_embeddings increases
# the model's postion embeddings size
model.resize_position_embeddings(max_position_embeddings + 10)
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)
# Check that it actually resizes the embeddings matrix
if model.config.is_encoder_decoder:
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
else:
model_embed = model.get_position_embeddings()
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the position embeddings with a smaller max_position_embeddings decreases
# the model's max_position_embeddings
model.resize_position_embeddings(max_position_embeddings - 5)
self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)
# Check that it actually resizes the embeddings matrix
if model.config.is_encoder_decoder:
encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
else:
model_embed = model.get_position_embeddings()
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
if model.config.is_encoder_decoder:
for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
else:
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# make sure that decoder_input_ids are resized as well
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
model_vocab_size = config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10, pad_to_multiple_of=1)
self.assertTrue(model.config.vocab_size + 10, model_vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
self.assertTrue(model_embed.weight.shape[0], model.config.vocab_size)
self.assertTrue(model.config.vocab_size, model.vocab_size)
model_embed = model.resize_token_embeddings(model_vocab_size + 13, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0] // 64, 0)
# Check that resizing a model to a multiple of pad_to_multiple leads to a model of exactly that size
target_dimension = 128
model_embed = model.resize_token_embeddings(target_dimension, pad_to_multiple_of=64)
self.assertTrue(model_embed.weight.shape[0], target_dimension)
with self.assertRaisesRegex(
ValueError,
"Asking to pad the embedding matrix to a multiple of `1.3`, which is not and integer. Please make sure to pass an integer",
):
model.resize_token_embeddings(model_vocab_size, pad_to_multiple_of=1.3)
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
return
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
return
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
# Input ids should be clamped to the maximum size of the vocabulary
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
model.set_input_embeddings(nn.Embedding(10, 10))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model_main_input_name(self):
for model_class in self.all_model_classes:
model_signature = inspect.signature(getattr(model_class, "forward"))
# The main input is the name of the argument after `self`
observed_main_input_name = list(model_signature.parameters.keys())[1]
self.assertEqual(model_class.main_input_name, observed_main_input_name)
def test_correct_missing_keys(self):
if not self.test_missing_keys:
return
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
base_model_prefix = model.base_model_prefix
if hasattr(model, base_model_prefix):
extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
# Some models define this as None
if model._keys_to_ignore_on_load_missing:
for key in model._keys_to_ignore_on_load_missing:
extra_params.pop(key, None)
if not extra_params:
# In that case, we *are* on a head model, but every
# single key is not actual parameters and this is
# tested in `test_tied_model_weights_key_ignore` test.
continue
with tempfile.TemporaryDirectory() as temp_dir_name:
model.base_model.save_pretrained(temp_dir_name)
model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
def test_tie_model_weights(self):
if not self.test_torchscript:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_same_values(layer_1, layer_2):
equal = True
for p1, p2 in zip(layer_1.weight, layer_2.weight):
if p1.data.ne(p2.data).sum() > 0:
equal = False
return equal
for model_class in self.all_model_classes:
config.torchscript = True
model_not_tied = model_class(config)
if model_not_tied.get_output_embeddings() is None:
continue
config_tied = copy.deepcopy(config)
config_tied.torchscript = False
model_tied = model_class(config_tied)
params_tied = list(model_tied.parameters())
# Check that the embedding layer and decoding layer are the same in size and in value
# self.assertTrue(check_same_values(embeddings, decoding))
# Check that after resize they remain tied.
model_tied.resize_token_embeddings(config.vocab_size + 10)
params_tied_2 = list(model_tied.parameters())
self.assertEqual(len(params_tied_2), len(params_tied))
@require_safetensors
def test_can_use_safetensors(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model_tied = model_class(config)
with tempfile.TemporaryDirectory() as d:
try:
model_tied.save_pretrained(d, safe_serialization=True)
except Exception as e:
raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")
model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
# Checking the state dicts are correct
reloaded_state = model_reloaded.state_dict()
for k, v in model_tied.state_dict().items():
self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
torch.testing.assert_close(
v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
)
# Checking there was no complain of missing weights
self.assertEqual(infos["missing_keys"], [])
# Checking the tensor sharing are correct
ptrs = defaultdict(list)
for k, v in model_tied.state_dict().items():
ptrs[v.data_ptr()].append(k)
shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}
for _, shared_names in shared_ptrs.items():
reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
self.assertEqual(
len(reloaded_ptrs),
1,
f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
)
def test_load_save_without_tied_weights(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
config.tie_word_embeddings = False
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as d:
model.save_pretrained(d)
model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
# Checking the state dicts are correct
reloaded_state = model_reloaded.state_dict()
for k, v in model.state_dict().items():
self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
torch.testing.assert_close(
v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
)
# Checking there was no complain of missing weights
self.assertEqual(infos["missing_keys"], [])
def test_tied_weights_keys(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
config.tie_word_embeddings = True
for model_class in self.all_model_classes:
model_tied = model_class(config)
ptrs = collections.defaultdict(list)
for name, tensor in model_tied.state_dict().items():
ptrs[id_tensor_storage(tensor)].append(name)
# These are all the pointers of shared tensors.
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
# Detect we get a hit for each key
for key in tied_weight_keys:
is_tied_key = any(re.search(key, p) for group in tied_params for p in group)
self.assertTrue(is_tied_key, f"{key} is not a tied weight key for {model_class}.")
# Removed tied weights found from tied params -> there should only be one left after
for key in tied_weight_keys:
for i in range(len(tied_params)):
tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]
tied_params = [group for group in tied_params if len(group) > 1]
self.assertListEqual(
tied_params,
[],
f"Missing `_tied_weights_keys` for {model_class}: add all of {tied_params} except one.",
)
def test_model_weights_reload_no_missing_tied_weights(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
# We are nuking ALL weights on file, so every parameter should
# yell on load. We're going to detect if we yell too much, or too little.
placeholder_dict = {"tensor": torch.tensor([1, 2])}
safe_save_file(placeholder_dict, os.path.join(tmp_dir, "model.safetensors"), metadata={"format": "pt"})
model_reloaded, infos = model_class.from_pretrained(tmp_dir, output_loading_info=True)
prefix = f"{model_reloaded.base_model_prefix}."
params = dict(model_reloaded.named_parameters())
params.update(dict(model_reloaded.named_buffers()))
param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
missing_keys = set(infos["missing_keys"])
extra_missing = missing_keys - param_names
# Remove tied weights from extra missing: they are normally not warned as missing if their tied
# counterpart is present but here there are no weights at all so we do get the warning.
ptrs = collections.defaultdict(list)
for name, tensor in model_reloaded.state_dict().items():
ptrs[id_tensor_storage(tensor)].append(name)
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
for group in tied_params:
group = {k[len(prefix) :] if k.startswith(prefix) else k for k in group}
# We remove the group from extra_missing if not all weights from group are in it
if len(group - extra_missing) > 0:
extra_missing = extra_missing - set(group)
self.assertEqual(
extra_missing,
set(),
f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}. "
f"For debugging, tied parameters are {tied_params}",
)
missed_missing = param_names - missing_keys
# Remove nonpersistent buffers from missed_missing
buffers = [n for n, _ in model_reloaded.named_buffers()]
nonpersistent_buffers = {n for n in buffers if n not in model_reloaded.state_dict()}
nonpersistent_buffers = {
k[len(prefix) :] if k.startswith(prefix) else k for k in nonpersistent_buffers
}
missed_missing = missed_missing - nonpersistent_buffers
if model_reloaded._keys_to_ignore_on_load_missing is None:
expected_missing = set()
else:
expected_missing = set(model_reloaded._keys_to_ignore_on_load_missing)
self.assertEqual(
missed_missing,
expected_missing,
f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
" parameters. If they are non persistent buffers make sure to instantiate them with"
" `persistent=False`",
)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
if self.has_attentions:
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
)
# Don't copy this method to model specific test file!
# TODO: remove this method once the issues are all fixed!
def _make_attention_mask_non_null(self, inputs_dict):
"""Make sure no sequence has all zeros as attention mask"""
for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
if k in inputs_dict:
attention_mask = inputs_dict[k]
# Make sure no all 0s attention masks - to avoid failure at this moment.
# Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
# TODO: remove this line once a fix regarding large negative values for attention mask is done.
attention_mask = torch.cat(
[torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
)
# Here we make the first sequence with all 0s as attention mask.
# Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
# values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
# TODO: enable this block once the large negative values thing is cleaned up.
# (see https://github.com/huggingface/transformers/issues/14859)
# attention_mask = torch.cat(
# [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
# dim=0
# )
inputs_dict[k] = attention_mask
# Don't copy this method to model specific test file!
# TODO: remove this method once the issues are all fixed!
def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
"""For temporarily ignoring some failed test cases (issues to be fixed)"""
tf_keys = {k for k, v in tf_outputs.items() if v is not None}
pt_keys = {k for k, v in pt_outputs.items() if v is not None}
key_differences = tf_keys.symmetric_difference(pt_keys)
if model_class.__name__ in [
"FlaubertWithLMHeadModel",
"FunnelForPreTraining",
"ElectraForPreTraining",
"XLMWithLMHeadModel",
]:
for k in key_differences:
if k in ["loss", "losses"]:
tf_keys.discard(k)
pt_keys.discard(k)
elif model_class.__name__.startswith("GPT2"):
# `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
tf_keys.discard("past_key_values")
pt_keys.discard("past_key_values")
# create new outputs from the remaining fields
new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})
return new_tf_outputs, new_pt_outputs
# Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
"""Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
Args:
model_class: The class of the model that is currently testing. For example, `TFBertModel`,
TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
error messages.
name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
being a named field in the output.
"""
self.assertEqual(type(name), str)
if attributes is not None:
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
# Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
if isinstance(tf_outputs, ModelOutput):
self.assertTrue(
isinstance(pt_outputs, ModelOutput),
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
)
# Don't copy this block to model specific test file!
# TODO: remove this method and this line after issues are fixed
tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
tf_keys = [k for k, v in tf_outputs.items() if v is not None]
pt_keys = [k for k, v in pt_outputs.items() if v is not None]
self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
# convert to the case of `tuple`
# appending each key to the current (string) `name`
attributes = tuple([f"{name}.{k}" for k in tf_keys])
self.check_pt_tf_outputs(
tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
)
# Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
elif type(tf_outputs) in [tuple, list]:
self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")
if attributes is not None:
# case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
self.assertEqual(
len(attributes),
len(tf_outputs),
f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
)
else:
# case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
elif isinstance(tf_outputs, tf.Tensor):
self.assertTrue(
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
)
tf_outputs = tf_outputs.numpy()
pt_outputs = pt_outputs.detach().to("cpu").numpy()
self.assertEqual(
tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
)
# deal with NumPy's scalars to make replacing nan values by 0 work.
if np.isscalar(tf_outputs):
tf_outputs = np.array([tf_outputs])
pt_outputs = np.array([pt_outputs])
tf_nans = np.isnan(tf_outputs)
pt_nans = np.isnan(pt_outputs)
pt_outputs[tf_nans] = 0
tf_outputs[tf_nans] = 0
pt_outputs[pt_nans] = 0
tf_outputs[pt_nans] = 0
max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
else:
raise ValueError(
"`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
f" {type(tf_outputs)} instead."
)
def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
tf_inputs_dict = {}
for key, tensor in pt_inputs_dict.items():
# skip key that does not exist in tf
if isinstance(tensor, bool):
tf_inputs_dict[key] = tensor
elif key == "input_values":
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
elif key == "pixel_values":
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
elif key == "input_features":
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
# other general float inputs
elif tensor.is_floating_point():
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
else:
tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
return tf_inputs_dict
def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
# send pytorch inputs to the correct device
pt_inputs_dict = {
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
}
# send pytorch model to the correct device
pt_model.to(torch_device)
# Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
pt_model.eval()
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs_dict)
tf_outputs = tf_model(tf_inputs_dict)
# tf models returned loss is usually a tensor rather than a scalar.
# (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
# Change it here to a scalar to match PyTorch models' loss
tf_loss = getattr(tf_outputs, "loss", None)
if tf_loss is not None:
tf_outputs.loss = tf.math.reduce_mean(tf_loss)
self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
import transformers
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
tf_model_class_name = "TF" + model_class.__name__ # Add the "TF" at the beginning
if not hasattr(transformers, tf_model_class_name):
# transformers does not have this model in TF version yet
return
# Output all for aggressive testing
config.output_hidden_states = True
config.output_attentions = self.has_attentions
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
self._make_attention_mask_non_null(inputs_dict)
tf_model_class = getattr(transformers, tf_model_class_name)
pt_model = model_class(config)
tf_model = tf_model_class(config)
pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
pt_inputs_dict_with_labels = self._prepare_for_class(
inputs_dict,
model_class,
# Not all models accept "labels" in the forward pass (yet :) )
return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
)
# make sure only tf inputs are forward that actually exist in function args
tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())
# remove all head masks
tf_input_keys.discard("head_mask")
tf_input_keys.discard("cross_attn_head_mask")
tf_input_keys.discard("decoder_head_mask")
pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}
# For some models (e.g. base models), there is no label returned.
# Set the input dict to `None` to avoid check outputs twice for the same input dicts.
if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
pt_inputs_dict_with_labels = None
# Check we can load pt model in tf and vice-versa with model => model functions
# Here requires `tf_inputs_dict` to build `tf_model`
tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
tf_model = transformers.load_pytorch_model_in_tf2_model(
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
)
pt_model = transformers.load_tf2_model_in_pytorch_model(
pt_model, tf_model, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
# check with `labels`
if pt_inputs_dict_with_labels:
self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
)
# Original test: check without `labels`
self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
# check with `labels`
if pt_inputs_dict_with_labels:
self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
diff = np.abs((a - b)).max()
self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")
def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
"""
Args:
model_class: The class of the model that is currently testing. For example, ..., etc.
Currently unused, but it could make debugging easier and faster.
names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
Currently unused, but in the future, we could use this information to make the error message clearer
by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
"""
self.assertEqual(type(name), str)
if attributes is not None:
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
# Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
if isinstance(fx_outputs, ModelOutput):
self.assertTrue(
isinstance(pt_outputs, ModelOutput),
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
)
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")
# convert to the case of `tuple`
# appending each key to the current (string) `name`
attributes = tuple([f"{name}.{k}" for k in fx_keys])
self.check_pt_flax_outputs(
fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
)
# Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
elif type(fx_outputs) in [tuple, list]:
self.assertEqual(
type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
)
self.assertEqual(
len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
)
if attributes is not None:
# case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
self.assertEqual(
len(attributes),
len(fx_outputs),
f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
)
else:
# case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])
for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)
elif isinstance(fx_outputs, jnp.ndarray):
self.assertTrue(
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
)
# Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
fx_outputs = np.array(fx_outputs)
pt_outputs = pt_outputs.detach().to("cpu").numpy()
self.assertEqual(
fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
)
# deal with NumPy's scalars to make replacing nan values by 0 work.
if np.isscalar(fx_outputs):
fx_outputs = np.array([fx_outputs])
pt_outputs = np.array([pt_outputs])
fx_nans = np.isnan(fx_outputs)
pt_nans = np.isnan(pt_outputs)
pt_outputs[fx_nans] = 0
fx_outputs[fx_nans] = 0
pt_outputs[pt_nans] = 0
fx_outputs[pt_nans] = 0
max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
self.assertLessEqual(
max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
)
else:
raise ValueError(
"`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
f" {type(fx_outputs)} instead."
)
@is_pt_flax_cross_test
def test_equivalence_pt_to_flax(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
fx_model_class_name = "Flax" + model_class.__name__
if not hasattr(transformers, fx_model_class_name):
# no flax model exists for this class
return
# Output all for aggressive testing
config.output_hidden_states = True
config.output_attentions = self.has_attentions
fx_model_class = getattr(transformers, fx_model_class_name)
# load PyTorch class
pt_model = model_class(config).eval()
# Flax models don't use the `use_cache` option and cache is not returned as a default.
# So we disable `use_cache` here for PyTorch model.
pt_model.config.use_cache = False
# load Flax class
fx_model = fx_model_class(config, dtype=jnp.float32)
# make sure only flax inputs are forward that actually exist in function args
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()
# prepare inputs
pt_inputs = self._prepare_for_class(inputs_dict, model_class)
# remove function args that don't exist in Flax
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}
# send pytorch inputs to the correct device
pt_inputs = {
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
}
# convert inputs to Flax
fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
fx_model.params = fx_state
# send pytorch model to the correct device
pt_model.to(torch_device)
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs)
fx_outputs = fx_model(**fx_inputs)
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
self.assertEqual(fx_keys, pt_keys)
self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)
fx_outputs_loaded = fx_model_loaded(**fx_inputs)
fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
self.assertEqual(fx_keys, pt_keys)
self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
@is_pt_flax_cross_test
def test_equivalence_flax_to_pt(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
fx_model_class_name = "Flax" + model_class.__name__
if not hasattr(transformers, fx_model_class_name):
# no flax model exists for this class
return
# Output all for aggressive testing
config.output_hidden_states = True
config.output_attentions = self.has_attentions
fx_model_class = getattr(transformers, fx_model_class_name)
# load PyTorch class
pt_model = model_class(config).eval()
# Flax models don't use the `use_cache` option and cache is not returned as a default.
# So we disable `use_cache` here for PyTorch model.
pt_model.config.use_cache = False
# load Flax class
fx_model = fx_model_class(config, dtype=jnp.float32)
# make sure only flax inputs are forward that actually exist in function args
fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()
# prepare inputs
pt_inputs = self._prepare_for_class(inputs_dict, model_class)
# remove function args that don't exist in Flax
pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}
# send pytorch inputs to the correct device
pt_inputs = {
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
}
# convert inputs to Flax
fx_inputs = {k: np.array(v.to("cpu")) for k, v in pt_inputs.items() if torch.is_tensor(v)}
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)
# make sure weights are tied in PyTorch
pt_model.tie_weights()
# send pytorch model to the correct device
pt_model.to(torch_device)
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs)
fx_outputs = fx_model(**fx_inputs)
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
self.assertEqual(fx_keys, pt_keys)
self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(tmpdirname)
pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)
# send pytorch model to the correct device
pt_model_loaded.to(torch_device)
pt_model_loaded.eval()
with torch.no_grad():
pt_outputs_loaded = pt_model_loaded(**pt_inputs)
fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])
self.assertEqual(fx_keys, pt_keys)
self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
@require_torch_multi_gpu
def test_multi_gpu_data_parallel_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# some params shouldn't be scattered by nn.DataParallel
# so just remove them if they are present.
blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
for k in blacklist_non_batched_params:
inputs_dict.pop(k, None)
# move input tensors to cuda:O
for k, v in inputs_dict.items():
if torch.is_tensor(v):
inputs_dict[k] = v.to(0)
for model_class in self.all_model_classes:
model = model_class(config=config)
model.to(0)
model.eval()
# Wrap model in nn.DataParallel
model = nn.DataParallel(model)
with torch.no_grad():
_ = model(**self._prepare_for_class(inputs_dict, model_class))
@require_torch_multi_gpu
def test_model_parallelization(self):
if not self.test_model_parallel:
return
# a candidate for testing_utils
def get_current_gpu_memory_use():
"""returns a list of cuda memory allocations per GPU in MBs"""
per_device_memory = []
for id in range(torch.cuda.device_count()):
with torch.cuda.device(id):
per_device_memory.append(torch.cuda.memory_allocated() >> 20)
return per_device_memory
# Needs a large model to see the difference.
config = self.model_tester.get_large_model_config()
for model_class in self.all_parallelizable_model_classes:
torch.cuda.empty_cache()
# 1. single gpu memory load + unload + memory measurements
# Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
memory_at_start = get_current_gpu_memory_use()
# Put model on device 0 and take a memory snapshot
model = model_class(config)
model.to("cuda:0")
memory_after_model_load = get_current_gpu_memory_use()
# The memory use on device 0 should be higher than it was initially.
self.assertGreater(memory_after_model_load[0], memory_at_start[0])
del model
gc.collect()
torch.cuda.empty_cache()
# 2. MP test
# it's essential to re-calibrate the usage before the next stage
memory_at_start = get_current_gpu_memory_use()
# Spread model layers over multiple devices
model = model_class(config)
model.parallelize()
memory_after_parallelization = get_current_gpu_memory_use()
# Assert that the memory use on all devices is higher than it was when loaded only on CPU
for n in range(len(model.device_map.keys())):
self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
# Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])
# Assert that the memory use of device 1 is higher than it was when the entire model was loaded
# on device 0 and device 1 wasn't used at all
self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])
del model
gc.collect()
torch.cuda.empty_cache()
@require_torch_multi_gpu
def test_model_parallel_equal_results(self):
if not self.test_model_parallel:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_parallelizable_model_classes:
inputs_dict = self._prepare_for_class(inputs_dict, model_class)
def cast_to_device(dictionary, device):
output = {}
for k, v in dictionary.items():
if isinstance(v, torch.Tensor):
output[k] = v.to(device)
else:
output[k] = v
return output
model = model_class(config)
output = model(**cast_to_device(inputs_dict, "cpu"))
model.parallelize()
parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
for value, parallel_value in zip(output, parallel_output):
if isinstance(value, torch.Tensor):
self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
elif isinstance(value, (Tuple, List)):
for value_, parallel_value_ in zip(value, parallel_value):
self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))
def check_device_map_is_respected(self, model, device_map):
for param_name, param in model.named_parameters():
# Find device in device_map
while len(param_name) > 0 and param_name not in device_map:
param_name = ".".join(param_name.split(".")[:-1])
if param_name not in device_map:
raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")
param_device = device_map[param_name]
if param_device in ["cpu", "disk"]:
self.assertEqual(param.device, torch.device("meta"))
else:
self.assertEqual(param.device, torch.device(param_device))
@require_accelerate
@mark.accelerate_tests
@require_torch_gpu
def test_disk_offload_bin(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict_class)
model_size = compute_module_sizes(model)[""]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
with self.assertRaises(ValueError):
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
# This errors out cause it's missing an offload folder
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
max_size = int(self.model_split_percents[1] * model_size)
max_memory = {0: max_size, "cpu": max_size}
new_model = model_class.from_pretrained(
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
)
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict_class)
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
else:
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
@require_accelerate
@mark.accelerate_tests
@require_torch_gpu
def test_disk_offload_safetensors(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict_class)
model_size = compute_module_sizes(model)[""]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
max_size = int(self.model_split_percents[1] * model_size)
max_memory = {0: max_size, "cpu": max_size}
# This doesn't error out as it's in safetensors and doesn't need an offload folder
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict_class)
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
else:
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
@require_accelerate
@mark.accelerate_tests
@require_torch_gpu
def test_cpu_offload(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict_class)
model_size = compute_module_sizes(model)[""]
# We test several splits of sizes to make sure it works.
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
for max_size in max_gpu_sizes:
max_memory = {0: max_size, "cpu": model_size * 2}
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
# Making sure part of the model will actually end up offloaded
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict_class)
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
else:
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
@require_accelerate
@mark.accelerate_tests
@require_torch_multi_gpu
def test_model_parallelism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class._no_split_modules is None:
continue
inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config).eval()
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict_class)
model_size = compute_module_sizes(model)[""]
# We test several splits of sizes to make sure it works.
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
for max_size in max_gpu_sizes:
max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
# Making sure part of the model will actually end up offloaded
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict_class)
if isinstance(base_output[0], tuple) and isinstance(new_output[0], tuple):
self.assertTrue(torch.allclose(a, b, atol=1e-5) for a, b in zip(base_output[0], new_output[0]))
else:
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
def test_problem_types(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
problem_types = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if model_class.__name__ not in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
]:
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
config.problem_type = problem_type["title"]
config.num_labels = problem_type["num_labels"]
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
if problem_type["num_labels"] > 1:
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=True) as warning_list:
loss = model(**inputs).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}"
)
loss.backward()
def test_load_with_mismatched_shapes(self):
if not self.test_mismatched_shapes:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
continue
with self.subTest(msg=f"Testing {model_class}"):
with tempfile.TemporaryDirectory() as tmp_dir:
model = model_class(config)
model.save_pretrained(tmp_dir)
# Fails when we don't set ignore_mismatched_sizes=True
with self.assertRaises(RuntimeError):
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
with self.assertRaises(RuntimeError):
new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
new_model = AutoModelForSequenceClassification.from_pretrained(
tmp_dir, num_labels=42, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)
new_model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
logits = new_model(**inputs).logits
self.assertEqual(logits.shape[1], 42)
with CaptureLogger(logger) as cl:
new_model_without_prefix = AutoModel.from_pretrained(
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)
input_ids = ids_tensor((2, 8), 10)
new_model_without_prefix.to(torch_device)
if self.is_encoder_decoder:
new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
else:
new_model_without_prefix(input_ids)
def test_mismatched_shapes_have_properly_initialized_weights(self):
if not self.test_mismatched_shapes:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
continue
with self.subTest(msg=f"Testing {model_class}"):
with tempfile.TemporaryDirectory() as tmp_dir:
model = model_class(configs_no_init)
model.save_pretrained(tmp_dir)
# Fails when we don't set ignore_mismatched_sizes=True
with self.assertRaises(RuntimeError):
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
logger = logging.get_logger("transformers.modeling_utils")
with CaptureLogger(logger) as cl:
new_model = AutoModelForSequenceClassification.from_pretrained(
tmp_dir, num_labels=42, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)
for name, param in new_model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
# 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
class MyClass(PreTrainedModel):
config_class = PretrainedConfig
def __init__(self, config=None):
super().__init__(config if config is not None else PretrainedConfig())
self.linear = nn.Linear(10, config.num_labels, bias=True)
self.embedding = nn.Embedding(10, 10)
self.std = 1
def _init_weights(self, module):
if isinstance(module, nn.Linear):
module.weight.data = nn.init.kaiming_uniform_(module.weight.data, np.sqrt(5))
if module.bias is not None:
module.bias.data = module.bias.data.normal_(mean=0.0, std=self.std)
# Used to make sure the weights with matched shape are loaded correctly
config = PretrainedConfig()
config.num_labels = 3
model = MyClass(config=config)
# Used to make sure the weights with mismatched shape are properly initialized
set_seed(0)
config = PretrainedConfig()
config.num_labels = 4
# not to init. the weights during the creation: to match the logic in `from_pretrained`, so we can keep the
# same sequence of random ops in the execution path to allow us to compare `target_model` and `new_model` below
# for `linear` part.
with ContextManagers([no_init_weights(True)]):
target_model = MyClass(config=config)
target_model.apply(target_model._initialize_weights)
with tempfile.TemporaryDirectory() as tmpdirname:
state_dict = model.state_dict()
del state_dict["linear.weight"]
model.config.save_pretrained(tmpdirname)
torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))
set_seed(0)
new_model = MyClass.from_pretrained(tmpdirname, num_labels=4, ignore_mismatched_sizes=True)
for key in new_model.state_dict().keys():
# check weight values for weights with matched shapes are identical
# (i.e. correctly loaded from the checkpoint)
if key not in ["linear.weight", "linear.bias"]:
max_diff = torch.max(torch.abs(model.state_dict()[key] - new_model.state_dict()[key]))
self.assertLessEqual(
max_diff.item(),
1e-6,
msg=f"the weight values for `{key}` in `new_model` and `model` are not identical",
)
else:
# check we have some mismatched shapes
self.assertNotEqual(
model.state_dict()[key].shape,
new_model.state_dict()[key].shape,
msg=f"the weight shapes for {key} in `model` and `new_model` should differ",
)
# check the weights with mismatched shape are properly initialized
max_diff = torch.max(torch.abs(new_model.state_dict()[key] - target_model.state_dict()[key]))
self.assertLessEqual(
max_diff.item(),
1e-6,
msg=f"the weight values for `{key}` in `new_model` and `target_model` are not identical",
)
def test_model_is_small(self):
# Just a consistency check to make sure we are not running tests on 80M parameter models.
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
num_params = model.num_parameters()
assert (
num_params < 1000000
), f"{model_class} is too big for the common tests ({num_params})! It should have 1M max."
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
def test_flash_attn_2_conversion(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.float16, attn_implementation="flash_attention_2"
).to(torch_device)
for _, module in model.named_modules():
if "FlashAttention" in module.__class__.__name__:
return
self.assertTrue(False, "FlashAttention2 modules not found in model")
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky
def test_flash_attn_2_inference_equivalence(self):
for model_class in self.all_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
model.to(torch_device)
dummy_input = inputs_dict[model.main_input_name][:1]
if dummy_input.dtype in [torch.float32, torch.float16]:
dummy_input = dummy_input.to(torch.bfloat16)
dummy_attention_mask = inputs_dict.get("attention_mask", None)
if dummy_attention_mask is not None:
dummy_attention_mask = dummy_attention_mask[:1]
dummy_attention_mask[:, 1:] = 1
dummy_attention_mask[:, :1] = 0
if model.config.is_encoder_decoder:
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
else:
outputs = model(dummy_input, output_hidden_states=True)
outputs_fa = model_fa(dummy_input, output_hidden_states=True)
logits = (
outputs.hidden_states[-1]
if not model.config.is_encoder_decoder
else outputs.decoder_hidden_states[-1]
)
logits_fa = (
outputs_fa.hidden_states[-1]
if not model.config.is_encoder_decoder
else outputs_fa.decoder_hidden_states[-1]
)
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
if model.config.is_encoder_decoder:
other_inputs = {
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": dummy_attention_mask,
"output_hidden_states": True,
}
if dummy_attention_mask is not None:
other_inputs["attention_mask"] = dummy_attention_mask
outputs = model(dummy_input, **other_inputs)
outputs_fa = model_fa(dummy_input, **other_inputs)
else:
other_inputs = {
"output_hidden_states": True,
}
if dummy_attention_mask is not None:
other_inputs["attention_mask"] = dummy_attention_mask
outputs = model(dummy_input, **other_inputs)
outputs_fa = model_fa(dummy_input, **other_inputs)
logits = (
outputs.hidden_states[-1]
if not model.config.is_encoder_decoder
else outputs.decoder_hidden_states[-1]
)
logits_fa = (
outputs_fa.hidden_states[-1]
if not model.config.is_encoder_decoder
else outputs_fa.decoder_hidden_states[-1]
)
assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
# check with inference + dropout
model.train()
_ = model_fa(dummy_input, **other_inputs)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky
def test_flash_attn_2_inference_equivalence_right_padding(self):
for model_class in self.all_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
model.to(torch_device)
dummy_input = inputs_dict[model.main_input_name][:1]
if dummy_input.dtype in [torch.float32, torch.float16]:
dummy_input = dummy_input.to(torch.bfloat16)
dummy_attention_mask = inputs_dict.get("attention_mask", None)
if dummy_attention_mask is not None:
dummy_attention_mask = dummy_attention_mask[:1]
dummy_attention_mask[:, :-1] = 1
dummy_attention_mask[:, -1:] = 0
if model.config.is_encoder_decoder:
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
else:
outputs = model(dummy_input, output_hidden_states=True)
outputs_fa = model_fa(dummy_input, output_hidden_states=True)
logits = (
outputs.hidden_states[-1]
if not model.config.is_encoder_decoder
else outputs.decoder_hidden_states[-1]
)
logits_fa = (
outputs_fa.hidden_states[-1]
if not model.config.is_encoder_decoder
else outputs_fa.decoder_hidden_states[-1]
)
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
if model.config.is_encoder_decoder:
other_inputs = {
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": dummy_attention_mask,
"output_hidden_states": True,
}
if dummy_attention_mask is not None:
other_inputs["attention_mask"] = dummy_attention_mask
outputs = model(dummy_input, **other_inputs)
outputs_fa = model_fa(dummy_input, **other_inputs)
else:
other_inputs = {
"output_hidden_states": True,
}
if dummy_attention_mask is not None:
other_inputs["attention_mask"] = dummy_attention_mask
outputs = model(dummy_input, **other_inputs)
outputs_fa = model_fa(dummy_input, **other_inputs)
logits = (
outputs.hidden_states[-1]
if not model.config.is_encoder_decoder
else outputs.decoder_hidden_states[-1]
)
logits_fa = (
outputs_fa.hidden_states[-1]
if not model.config.is_encoder_decoder
else outputs_fa.decoder_hidden_states[-1]
)
assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky
def test_flash_attn_2_generate_left_padding(self):
for model_class in self.all_generative_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
torch_device
)
dummy_input = inputs_dict[model.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# make sure we do left padding
dummy_attention_mask[:, :-1] = 0
dummy_attention_mask[:, -1:] = 1
out = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
out_fa = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
self.assertTrue(torch.allclose(out, out_fa))
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@is_flaky
@slow
def test_flash_attn_2_generate_padding_right(self):
for model_class in self.all_generative_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
torch_device
)
dummy_input = inputs_dict[model.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# make sure we do right padding
dummy_attention_mask[:, :-1] = 1
dummy_attention_mask[:, -1:] = 0
out = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
out_fa = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
self.assertTrue(torch.allclose(out, out_fa))
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
@require_torch_sdpa
@slow
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
if not self.all_model_classes[0]._supports_sdpa:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
self.skipTest(
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
)
# Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
if torch_dtype == "float16":
torch_dtype = torch.float16
elif torch_dtype == "bfloat16":
torch_dtype = torch.bfloat16
elif torch_dtype == "float32":
torch_dtype = torch.float32
atols = {
("cpu", False, torch.float32): 1e-6,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-6,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-6,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-6,
("cuda", True, torch.bfloat16): 1e-2,
("cuda", True, torch.float16): 5e-3,
}
rtols = {
("cpu", False, torch.float32): 1e-4,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-4,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-4,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-4,
("cuda", True, torch.bfloat16): 3e-2,
("cuda", True, torch.float16): 5e-3,
}
def get_mean_reldiff(failcase, x, ref, atol, rtol):
return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
is_encoder_decoder = model.config.is_encoder_decoder
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
model_sdpa = model_sdpa.eval().to(torch_device)
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
model_eager = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch_dtype,
attn_implementation="eager",
)
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
if "SdpaAttention" in submodule.__class__.__name__:
raise ValueError("The eager model should not have SDPA attention layers")
has_sdpa = False
for name, submodule in model_sdpa.named_modules():
if "SdpaAttention" in submodule.__class__.__name__:
has_sdpa = True
break
if not has_sdpa and model_sdpa.config.model_type != "falcon":
raise ValueError("The SDPA model should have SDPA attention layers")
# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 8 times the model,
# but it would be nicer to have an efficient way to use parameterized.expand
fail_cases = []
for padding_side in ["left", "right"]:
for use_mask in [False, True]:
for batch_size in [1, 5]:
dummy_input = inputs_dict[model.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
dummy_input = dummy_input.to(torch_dtype)
dummy_input = dummy_input[:batch_size]
if dummy_input.shape[0] != batch_size:
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
extension = torch.rand(
batch_size - dummy_input.shape[0],
*dummy_input.shape[1:],
dtype=torch_dtype,
device=torch_device,
)
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
else:
extension = torch.randint(
high=5,
size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
dtype=dummy_input.dtype,
device=torch_device,
)
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
if not use_mask:
dummy_attention_mask = None
else:
dummy_attention_mask = inputs_dict.get("attention_mask", None)
if dummy_attention_mask is None:
if is_encoder_decoder:
seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
else:
seqlen = dummy_input.shape[-1]
dummy_attention_mask = (
torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
)
dummy_attention_mask = dummy_attention_mask[:batch_size]
if dummy_attention_mask.shape[0] != batch_size:
extension = torch.ones(
batch_size - dummy_attention_mask.shape[0],
*dummy_attention_mask.shape[1:],
dtype=dummy_attention_mask.dtype,
device=torch_device,
)
dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
dummy_attention_mask = dummy_attention_mask.to(torch_device)
dummy_attention_mask[:] = 1
if padding_side == "left":
dummy_attention_mask[-1, :-1] = 1
dummy_attention_mask[-1, -4:] = 0
elif padding_side == "right":
dummy_attention_mask[-1, 1:] = 1
dummy_attention_mask[-1, :3] = 0
for enable_kernels in [False, True]:
failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
if is_encoder_decoder:
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:batch_size]
if decoder_input_ids.shape[0] != batch_size:
extension = torch.ones(
batch_size - decoder_input_ids.shape[0],
*decoder_input_ids.shape[1:],
dtype=decoder_input_ids.dtype,
device=torch_device,
)
decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
decoder_input_ids = decoder_input_ids.to(torch_device)
# TODO: never an `attention_mask` arg here?
other_inputs = {
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": dummy_attention_mask,
"output_hidden_states": True,
}
else:
other_inputs = {
"output_hidden_states": True,
}
# Otherwise fails for e.g. WhisperEncoderModel
if "attention_mask" in inspect.signature(model_eager.forward).parameters:
other_inputs["attention_mask"] = dummy_attention_mask
# TODO: test gradients as well (& for FA2 as well!)
with torch.no_grad():
with torch.backends.cuda.sdp_kernel(
enable_flash=enable_kernels,
enable_math=True,
enable_mem_efficient=enable_kernels,
):
outputs_eager = model_eager(dummy_input, **other_inputs)
outputs_sdpa = model_sdpa(dummy_input, **other_inputs)
logits_eager = (
outputs_eager.hidden_states[-1]
if not is_encoder_decoder
else outputs_eager.decoder_hidden_states[-1]
)
logits_sdpa = (
outputs_sdpa.hidden_states[-1]
if not is_encoder_decoder
else outputs_sdpa.decoder_hidden_states[-1]
)
if torch_device in ["cpu", "cuda"]:
atol = atols[torch_device, enable_kernels, torch_dtype]
rtol = rtols[torch_device, enable_kernels, torch_dtype]
else:
atol = 1e-7
rtol = 1e-4
# Masked tokens output slightly deviates - we don't mind that.
if use_mask:
if padding_side == "left":
sub_sdpa = logits_sdpa[:-1]
sub_eager = logits_eager[:-1]
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
fail_cases.append(
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
)
sub_sdpa = logits_sdpa[-1, :-4]
sub_eager = logits_eager[-1, :-4]
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
fail_cases.append(
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
)
# Testing the padding tokens is not really meaningful but anyway
# sub_sdpa = logits_sdpa[-1, -4:]
# sub_eager = logits_eager[-1, -4:]
# if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
# fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
elif padding_side == "right":
sub_sdpa = logits_sdpa[:-1]
sub_eager = logits_eager[:-1]
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
fail_cases.append(
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
)
sub_sdpa = logits_sdpa[-1, 3:]
sub_eager = logits_eager[-1, 3:]
if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
fail_cases.append(
get_mean_reldiff(failcase, sub_sdpa, sub_eager, atol, rtol)
)
# Testing the padding tokens is not really meaningful but anyway
# sub_sdpa = logits_sdpa[-1, :3]
# sub_eager = logits_eager[-1, :3]
# if not torch.allclose(sub_sdpa, sub_eager, atol=atol, rtol=rtol):
# fail_cases.append(get_mean_reldiff(failcase, sub_sdpa, sub_eager, 4e-2, 4e-2))
else:
if not torch.allclose(logits_sdpa, logits_eager, atol=atol, rtol=rtol):
fail_cases.append(
get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
)
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))
@require_torch_sdpa
@require_torch_gpu
@slow
def test_sdpa_can_dispatch_on_flash(self):
compute_capability = torch.cuda.get_device_capability()
major, _ = compute_capability
if not torch.version.cuda or major < 8:
self.skipTest("This test requires an NVIDIA GPU with compute capability >= 8.0")
for model_class in self.all_model_classes:
if not model_class._supports_sdpa:
self.skipTest(f"{model_class.__name__} does not support SDPA")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if config.model_type in ["llava", "llava_next", "vipllava"]:
self.skipTest("Llava-like models currently (transformers==4.39.1) requires an attention_mask input")
if config.model_type in ["idefics"]:
self.skipTest("Idefics currently (transformers==4.39.1) requires an image_attention_mask input")
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, attn_implementation="sdpa")
model.to(torch_device)
inputs_dict.pop("attention_mask", None)
inputs_dict.pop("decoder_attention_mask", None)
for name, inp in inputs_dict.items():
if isinstance(inp, torch.Tensor) and inp.dtype in [torch.float32, torch.float16]:
inputs_dict[name] = inp.to(torch.float16)
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
_ = model(**inputs_dict)
@require_torch_sdpa
@slow
def test_eager_matches_sdpa_generate(self):
max_new_tokens = 30
if len(self.all_generative_model_classes) == 0:
self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")
for model_class in self.all_generative_model_classes:
if not model_class._supports_sdpa:
self.skipTest(f"{model_class.__name__} does not support SDPA")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
model_sdpa = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(torch_device)
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
model_eager = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation="eager",
).to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
if "SdpaAttention" in submodule.__class__.__name__:
raise ValueError("The eager model should not have SDPA attention layers")
has_sdpa = False
for name, submodule in model_sdpa.named_modules():
if "SdpaAttention" in submodule.__class__.__name__:
has_sdpa = True
break
if not has_sdpa:
raise ValueError("The SDPA model should have SDPA attention layers")
# Just test that a large cache works as expected
res_eager = model_eager.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
)
res_sdpa = model_sdpa.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
)
self.assertTrue(torch.allclose(res_eager, res_sdpa))
@require_torch_sdpa
def test_sdpa_matches_eager_sliding_window(self):
WINDOW_ATTENTION_MODELS = ["mistral", "mixtral", "qwen2", "qwen_moe", "starcoder2"]
if len(self.all_generative_model_classes) == 0:
self.skipTest(f"No generative model classes for {self.__class__.__name__}")
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if config.model_type not in WINDOW_ATTENTION_MODELS:
self.skipTest(f"{config.model_type} does not use window attention")
config.sliding_window = 2
dummy_input = inputs_dict[model_class.main_input_name]
attention_mask = inputs_dict["attention_mask"]
self.assertTrue(dummy_input.ndim == 2)
self.assertTrue(dummy_input.shape[1] > 6)
with tempfile.TemporaryDirectory() as tmpdir:
with torch.device(torch_device):
model_eager = AutoModelForCausalLM.from_config(
config, attn_implementation="eager", torch_dtype=torch.float32
)
model_eager.save_pretrained(tmpdir)
with torch.device(torch_device):
model_sdpa = AutoModelForCausalLM.from_pretrained(
tmpdir, attn_implementation="sdpa", torch_dtype=torch.float32
)
model_eager = model_eager.eval()
model_sdpa = model_sdpa.eval()
with torch.no_grad():
with torch.backends.cuda.sdp_kernel(
enable_flash=False,
enable_math=True,
enable_mem_efficient=False,
):
res_eager = model_eager(**inputs_dict, return_dict=False)[0]
res_sdpa = model_sdpa(**inputs_dict, return_dict=False)[0]
# Only non-padding tokens are expected to match.
self.assertTrue(
torch.allclose(res_eager[attention_mask == 1], res_sdpa[attention_mask == 1], rtol=1e-4, atol=1e-4)
)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
def test_flash_attn_2_generate_use_cache(self):
max_new_tokens = 30
for model_class in self.all_generative_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
# Just test that a large cache works as expected
_ = model.generate(
dummy_input,
attention_mask=dummy_attention_mask,
max_new_tokens=max_new_tokens,
do_sample=False,
use_cache=True,
)
@require_flash_attn
@require_torch_gpu
@require_bitsandbytes
@mark.flash_attn_test
@slow
def test_flash_attn_2_fp32_ln(self):
for model_class in self.all_generative_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_input = inputs_dict[model.main_input_name]
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
batch_size = dummy_attention_mask.shape[0]
is_padding_right = dummy_attention_mask[:, -1].sum().item() != batch_size
# To avoid errors with padding_side=="right"
if is_padding_right:
dummy_attention_mask = torch.ones_like(dummy_input)
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
load_in_4bit=True,
)
for _, param in model.named_parameters():
# upcast only layer norms
if (param.dtype == torch.float16) or (param.dtype == torch.bfloat16):
param.data = param.data.to(torch.float32)
if model.config.is_encoder_decoder:
dummy_decoder_input_ids = inputs_dict["decoder_input_ids"]
dummy_decoder_attention_mask = inputs_dict["decoder_attention_mask"]
_ = model(dummy_input, decoder_input_ids=dummy_decoder_input_ids)
# with attention mask
_ = model(
dummy_input,
attention_mask=dummy_attention_mask,
decoder_input_ids=dummy_decoder_input_ids,
decoder_attention_mask=dummy_decoder_attention_mask,
)
else:
_ = model(dummy_input)
# with attention mask
_ = model(dummy_input, attention_mask=dummy_attention_mask)
@is_pt_tf_cross_test
def test_tf_from_pt_safetensors(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
tf_model_class_name = "TF" + model_class.__name__ # Add the "TF" at the beginning
if not hasattr(transformers, tf_model_class_name):
# transformers does not have this model in TF version yet
return
tf_model_class = getattr(transformers, tf_model_class_name)
pt_model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname, safe_serialization=True)
tf_model_1 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)
pt_model.save_pretrained(tmpdirname, safe_serialization=False)
tf_model_2 = tf_model_class.from_pretrained(tmpdirname, from_pt=True)
# Check models are equal
for p1, p2 in zip(tf_model_1.weights, tf_model_2.weights):
self.assertTrue(np.allclose(p1.numpy(), p2.numpy()))
@is_pt_flax_cross_test
def test_flax_from_pt_safetensors(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
flax_model_class_name = "Flax" + model_class.__name__ # Add the "Flax at the beginning
if not hasattr(transformers, flax_model_class_name):
# transformers does not have this model in Flax version yet
return
flax_model_class = getattr(transformers, flax_model_class_name)
pt_model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname, safe_serialization=True)
flax_model_1 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)
pt_model.save_pretrained(tmpdirname, safe_serialization=False)
flax_model_2 = flax_model_class.from_pretrained(tmpdirname, from_pt=True)
# Check models are equal
self.assertTrue(check_models_equal(flax_model_1, flax_model_2))
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
def test_flash_attn_2_from_config(self):
for model_class in self.all_generative_model_classes:
if not model_class._supports_flash_attn_2:
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# TODO: to change it in the future with other relevant auto classes
fa2_model = AutoModelForCausalLM.from_config(
config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
).to(torch_device)
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [0, 1, 1, 1]]).to(torch_device)
fa2_correctly_converted = False
for _, module in fa2_model.named_modules():
if "FlashAttention" in module.__class__.__name__:
fa2_correctly_converted = True
break
self.assertTrue(fa2_correctly_converted)
_ = fa2_model(input_ids=dummy_input, attention_mask=dummy_attention_mask)
with tempfile.TemporaryDirectory() as tmpdirname:
fa2_model.save_pretrained(tmpdirname)
model_from_pretrained = AutoModelForCausalLM.from_pretrained(tmpdirname)
self.assertTrue(model_from_pretrained.config._attn_implementation != "flash_attention_2")
fa2_correctly_converted = False
for _, module in model_from_pretrained.named_modules():
if "FlashAttention" in module.__class__.__name__:
fa2_correctly_converted = True
break
self.assertFalse(fa2_correctly_converted)
global_rng = random.Random()
def ids_tensor(shape, vocab_size, rng=None, name=None):
# Creates a random int32 tensor of the shape within the vocab size
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
def random_attention_mask(shape, rng=None, name=None):
attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
# make sure that at least one token is attended to for each batch
# we choose the 1st token so this property of `at least one being non-zero` still holds after applying causal mask
attn_mask[:, 0] = 1
return attn_mask
def floats_tensor(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.random() * scale)
return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
|