File size: 8,346 Bytes
9382e3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import json
import os
import time
import torch
import gradio as gr
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import random
# Environment variables
os.environ["TOKENIZERS_PARALLELISM"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# Global variables to store the model and tokenizer
model = None
tokenizer = None
# Load model and tokenizer
def load_model_and_tokenizer(model_name, dtype, kv_bits):
global model, tokenizer
if model is None or tokenizer is None:
print("Loading model and tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
special_tokens = {"pad_token": "<PAD>"}
tokenizer.add_special_tokens(special_tokens)
config = AutoConfig.from_pretrained(model_name)
if kv_bits != "unquantized":
quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad"
setattr(config, "quantizer_path", quantizer_path)
if dtype == "bf16":
dtype = torch.bfloat16
elif dtype == "fp16":
dtype = torch.float16
elif dtype == "fp32":
dtype = torch.float32
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto")
if len(tokenizer) > model.get_input_embeddings().weight.shape[0]:
model.resize_token_embeddings(len(tokenizer))
tokenizer.padding_side = "left"
model.config.pad_token_id = tokenizer.pad_token_id
return model, tokenizer
# Format response
def format_response(dialog, response):
question = next((turn['content'] for turn in dialog if turn['role'] == 'user'), 'No question found')
answer = response.split("assistant")[-1].strip()
return {"question": question, "answer": answer}
# Load questions
def load_questions(prompts_path, custom_questions):
with open(prompts_path, "r") as file:
dialogs = json.load(file)
selected_dialogs = []
if custom_questions:
for question in custom_questions:
if question.strip():
custom_dialog = [{"role": "user", "content": question}]
selected_dialogs.append(custom_dialog)
num_questions = 60 - len(selected_dialogs)
random.shuffle(dialogs)
selected_dialogs.extend(dialogs[:num_questions])
return selected_dialogs[:60]
# Inference
def infer(model_name, dialogs, num_new_tokens, temperature, dtype, kv_bits, progress=gr.Progress()):
print("Starting inference...")
model, tokenizer = load_model_and_tokenizer(model_name, dtype, kv_bits)
batch_inputs = [
tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=True)
for dialog in dialogs
]
responses = []
start_time = time.time()
batch_size = 30 # Set batch size for processing, this can be adjusted
num_dialogs = len(dialogs)
total_time = 0
total_tokens = 0
num_batches = (num_dialogs + batch_size - 1) // batch_size
for batch_idx in range(num_batches):
start_idx = batch_idx * batch_size
end_idx = min(start_idx + batch_size, num_dialogs)
batch = batch_inputs[start_idx:end_idx]
encoded_inputs = tokenizer(batch, padding=True, truncation=False, return_tensors="pt")
input_ids = encoded_inputs["input_ids"].to(model.device)
attention_mask = encoded_inputs["attention_mask"].to(model.device)
with torch.no_grad():
torch.cuda.synchronize()
batch_start_time = time.perf_counter()
# Generate responses and measure time to first token
output_tokens = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=num_new_tokens,
do_sample=True,
temperature=temperature,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
torch.cuda.synchronize()
batch_end_time = time.perf_counter()
batch_time = batch_end_time - batch_start_time
total_time += batch_time
total_tokens += output_tokens.numel()
# Calculate TTFT
if batch_idx == 0:
ttft = batch_time / input_ids.size(0) # Time to first token for the first batch
decoded_outputs = tokenizer.batch_decode(output_tokens, skip_special_tokens=True)
for i, response in enumerate(decoded_outputs):
original_dialog = dialogs[start_idx + i]
formatted_response = format_response(original_dialog, response)
responses.append(formatted_response)
formatted_responses = "\n\n---\n\n".join([f"**Question**: {res['question']}\n\n**Answer**: {res['answer']}" for res in responses])
yield formatted_responses
progress((batch_idx + 1) / num_batches, desc="Processing batches")
elapsed_time = time.time() - start_time
tokens_per_second = total_tokens / total_time if total_time > 0 else 0
print(f"Inference completed in {elapsed_time:.2f} seconds.")
yield {
"Time Taken (seconds)": elapsed_time,
"Tokens per Second": tokens_per_second,
"Time to First Token (TTFT, seconds)": ttft,
"Formatted Responses": formatted_responses
}
# Demo function
def demo(num_new_tokens, temperature, custom_questions_text, kv_bits, progress=gr.Progress()):
custom_questions = custom_questions_text.split("\n")
print("Loading questions...")
dialogs = load_questions("chats_sys_none.json", custom_questions)
print(f"{len(dialogs)} questions loaded. Starting inference...")
result_gen = infer("NousResearch/Meta-Llama-3-8B-Instruct", dialogs, num_new_tokens, temperature, "fp16", kv_bits, progress=progress)
formatted_responses = ""
for result in result_gen:
if isinstance(result, str):
formatted_responses = result
yield None, None, None, formatted_responses
else:
time_taken = result["Time Taken (seconds)"]
tokens_per_second = result["Tokens per Second"]
ttft = result["Time to First Token (TTFT, seconds)"]
formatted_responses = result["Formatted Responses"]
yield time_taken, tokens_per_second, ttft, formatted_responses
# Load JSON data
with open("chats_sys_none.json", "r") as file:
json_data = json.load(file)
json_data_str = json.dumps(json_data, indent=2)
# Show JSON function
def show_json():
return json_data_str
# Gradio interface
app = gr.Blocks()
with app:
with gr.Tab("LLM Inference Demo"):
with gr.Row():
with gr.Column():
num_new_tokens = gr.Slider(label="Number of New Tokens", minimum=128, maximum=1024, step=128, value=512)
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.4)
custom_questions_text = gr.Textbox(label="Custom Questions", placeholder="Type your custom questions here, one per line...", lines=5)
kv_bits = gr.Dropdown(label="KV Bits", choices=["1", "2", "4", "unquantized"], value="1")
with gr.Column():
time_taken = gr.Number(label="Time Taken (seconds)")
tokens_per_second = gr.Number(label="Tokens per Second")
ttft = gr.Number(label="Time to First Token (TTFT, seconds)")
with gr.Row():
formatted_responses = gr.Markdown(label="Formatted Responses")
demo_btn = gr.Button("Run Inference")
demo_btn.click(demo, inputs=[num_new_tokens, temperature, custom_questions_text, kv_bits], outputs=[time_taken, tokens_per_second, ttft, formatted_responses])
with gr.Tab("Show JSON"):
json_output = gr.HTML("<pre>{}</pre>".format(json_data_str))
json_interface = gr.Interface(fn=show_json, inputs=[], outputs=[json_output], live=False)
json_interface.render()
if __name__ == "__main__":
print("Loading model and tokenizer on startup...")
load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1")
print("Model and tokenizer loaded. Starting Gradio interface...")
app.queue(default_concurrency_limit=5).launch()
|