File size: 10,298 Bytes
9382e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import inspect
import tempfile

from transformers.testing_utils import require_torch, torch_device
from transformers.utils.backbone_utils import BackboneType


@require_torch
class BackboneTesterMixin:
    all_model_classes = ()
    has_attentions = True

    def test_config(self):
        config_class = self.config_class

        # test default config
        config = config_class()
        self.assertIsNotNone(config)
        num_stages = len(config.depths) if hasattr(config, "depths") else config.num_hidden_layers
        expected_stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_stages + 1)]
        self.assertEqual(config.stage_names, expected_stage_names)
        self.assertTrue(set(config.out_features).issubset(set(config.stage_names)))

        # Test out_features and out_indices are correctly set
        # out_features and out_indices both None
        config = config_class(out_features=None, out_indices=None)
        self.assertEqual(config.out_features, [config.stage_names[-1]])
        self.assertEqual(config.out_indices, [len(config.stage_names) - 1])

        # out_features and out_indices both set
        config = config_class(out_features=["stem", "stage1"], out_indices=[0, 1])
        self.assertEqual(config.out_features, ["stem", "stage1"])
        self.assertEqual(config.out_indices, [0, 1])

        # Only out_features set
        config = config_class(out_features=["stage1", "stage3"])
        self.assertEqual(config.out_features, ["stage1", "stage3"])
        self.assertEqual(config.out_indices, [1, 3])

        # Only out_indices set
        config = config_class(out_indices=[0, 2])
        self.assertEqual(config.out_features, [config.stage_names[0], config.stage_names[2]])
        self.assertEqual(config.out_indices, [0, 2])

        # Error raised when out_indices do not correspond to out_features
        with self.assertRaises(ValueError):
            config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 2])

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]
            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_config_save_pretrained(self):
        config_class = self.config_class
        config_first = config_class(out_indices=[0, 1, 2, 3])

        with tempfile.TemporaryDirectory() as tmpdirname:
            config_first.save_pretrained(tmpdirname)
            config_second = self.config_class.from_pretrained(tmpdirname)

        self.assertEqual(config_second.to_dict(), config_first.to_dict())

    def test_channels(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertEqual(len(model.channels), len(config.out_features))
            num_features = model.num_features
            out_indices = [config.stage_names.index(feat) for feat in config.out_features]
            out_channels = [num_features[idx] for idx in out_indices]
            self.assertListEqual(model.channels, out_channels)

            new_config = copy.deepcopy(config)
            new_config.out_features = None
            model = model_class(new_config)
            self.assertEqual(len(model.channels), 1)
            self.assertListEqual(model.channels, [num_features[-1]])

            new_config = copy.deepcopy(config)
            new_config.out_indices = None
            model = model_class(new_config)
            self.assertEqual(len(model.channels), 1)
            self.assertListEqual(model.channels, [num_features[-1]])

    def test_create_from_modified_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            result = model(**inputs_dict)

            self.assertEqual(len(result.feature_maps), len(config.out_features))
            self.assertEqual(len(model.channels), len(config.out_features))
            self.assertEqual(len(result.feature_maps), len(config.out_indices))
            self.assertEqual(len(model.channels), len(config.out_indices))

            # Check output of last stage is taken if out_features=None, out_indices=None
            modified_config = copy.deepcopy(config)
            modified_config.out_features = None
            model = model_class(modified_config)
            model.to(torch_device)
            model.eval()
            result = model(**inputs_dict)

            self.assertEqual(len(result.feature_maps), 1)
            self.assertEqual(len(model.channels), 1)

            modified_config = copy.deepcopy(config)
            modified_config.out_indices = None
            model = model_class(modified_config)
            model.to(torch_device)
            model.eval()
            result = model(**inputs_dict)

            self.assertEqual(len(result.feature_maps), 1)
            self.assertEqual(len(model.channels), 1)

            # Check backbone can be initialized with fresh weights
            modified_config = copy.deepcopy(config)
            modified_config.use_pretrained_backbone = False
            model = model_class(modified_config)
            model.to(torch_device)
            model.eval()
            result = model(**inputs_dict)

    def test_backbone_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for backbone_class in self.all_model_classes:
            backbone = backbone_class(config)

            self.assertTrue(hasattr(backbone, "backbone_type"))
            self.assertTrue(hasattr(backbone, "stage_names"))
            self.assertTrue(hasattr(backbone, "num_features"))
            self.assertTrue(hasattr(backbone, "out_indices"))
            self.assertTrue(hasattr(backbone, "out_features"))
            self.assertTrue(hasattr(backbone, "out_feature_channels"))
            self.assertTrue(hasattr(backbone, "channels"))

            self.assertIsInstance(backbone.backbone_type, BackboneType)
            # Verify num_features has been initialized in the backbone init
            self.assertIsNotNone(backbone.num_features)
            self.assertTrue(len(backbone.channels) == len(backbone.out_indices))
            self.assertTrue(len(backbone.stage_names) == len(backbone.num_features))
            self.assertTrue(len(backbone.channels) <= len(backbone.num_features))
            self.assertTrue(len(backbone.out_feature_channels) == len(backbone.stage_names))

    def test_backbone_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        batch_size = inputs_dict["pixel_values"].shape[0]

        for backbone_class in self.all_model_classes:
            backbone = backbone_class(config)
            backbone.to(torch_device)
            backbone.eval()

            outputs = backbone(**inputs_dict)

            # Test default outputs and verify feature maps
            self.assertIsInstance(outputs.feature_maps, tuple)
            self.assertTrue(len(outputs.feature_maps) == len(backbone.channels))
            for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels):
                self.assertTrue(feature_map.shape[:2], (batch_size, n_channels))
            self.assertIsNone(outputs.hidden_states)
            self.assertIsNone(outputs.attentions)

            # Test output_hidden_states=True
            outputs = backbone(**inputs_dict, output_hidden_states=True)
            self.assertIsNotNone(outputs.hidden_states)
            self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names))
            for hidden_state, n_channels in zip(outputs.hidden_states, backbone.channels):
                self.assertTrue(hidden_state.shape[:2], (batch_size, n_channels))

            # Test output_attentions=True
            if self.has_attentions:
                outputs = backbone(**inputs_dict, output_attentions=True)
                self.assertIsNotNone(outputs.attentions)

    def test_backbone_stage_selection(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        batch_size = inputs_dict["pixel_values"].shape[0]

        for backbone_class in self.all_model_classes:
            config.out_indices = [-2, -1]
            backbone = backbone_class(config)
            backbone.to(torch_device)
            backbone.eval()

            outputs = backbone(**inputs_dict)

            # Test number of feature maps returned
            self.assertIsInstance(outputs.feature_maps, tuple)
            self.assertTrue(len(outputs.feature_maps) == 2)

            # Order of channels returned is same as order of channels iterating over stage names
            channels_from_stage_names = [
                backbone.out_feature_channels[name] for name in backbone.stage_names if name in backbone.out_features
            ]
            self.assertEqual(backbone.channels, channels_from_stage_names)
            for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels):
                self.assertTrue(feature_map.shape[:2], (batch_size, n_channels))