File size: 8,675 Bytes
9382e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys


SRC_DIR = os.path.join(os.path.dirname(__file__), "src")
sys.path.append(SRC_DIR)


from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForCausalLM,
    AutoModelForMaskedLM,
    AutoModelForQuestionAnswering,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    add_start_docstrings,
)


dependencies = ["torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub"]


@add_start_docstrings(AutoConfig.__doc__)
def config(*args, **kwargs):
    r"""
                # Using torch.hub !
                import torch

                config = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased')  # Download configuration from huggingface.co and cache.
                config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
                config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/my_configuration.json')
                config = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased', output_attentions=True, foo=False)
                assert config.output_attentions == True
                config, unused_kwargs = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True)
                assert config.output_attentions == True
                assert unused_kwargs == {'foo': False}

            """

    return AutoConfig.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoTokenizer.__doc__)
def tokenizer(*args, **kwargs):
    r"""
        # Using torch.hub !
        import torch

        tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', 'google-bert/bert-base-uncased')    # Download vocabulary from huggingface.co and cache.
        tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', './test/bert_saved_model/')  # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`

    """

    return AutoTokenizer.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModel.__doc__)
def model(*args, **kwargs):
    r"""
            # Using torch.hub !
            import torch

            model = torch.hub.load('huggingface/transformers', 'model', 'google-bert/bert-base-uncased')    # Download model and configuration from huggingface.co and cache.
            model = torch.hub.load('huggingface/transformers', 'model', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = torch.hub.load('huggingface/transformers', 'model', 'google-bert/bert-base-uncased', output_attentions=True)  # Update configuration during loading
            assert model.config.output_attentions == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
            model = torch.hub.load('huggingface/transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """

    return AutoModel.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModelForCausalLM.__doc__)
def modelForCausalLM(*args, **kwargs):
    r"""
        # Using torch.hub !
        import torch

        model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'openai-community/gpt2')    # Download model and configuration from huggingface.co and cache.
        model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './test/saved_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'openai-community/gpt2', output_attentions=True)  # Update configuration during loading
        assert model.config.output_attentions == True
        # Loading from a TF checkpoint file instead of a PyTorch model (slower)
        config = AutoConfig.from_pretrained('./tf_model/gpt_tf_model_config.json')
        model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './tf_model/gpt_tf_checkpoint.ckpt.index', from_tf=True, config=config)

    """
    return AutoModelForCausalLM.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModelForMaskedLM.__doc__)
def modelForMaskedLM(*args, **kwargs):
    r"""
            # Using torch.hub !
            import torch

            model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', 'google-bert/bert-base-uncased')    # Download model and configuration from huggingface.co and cache.
            model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', 'google-bert/bert-base-uncased', output_attentions=True)  # Update configuration during loading
            assert model.config.output_attentions == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
            model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """

    return AutoModelForMaskedLM.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModelForSequenceClassification.__doc__)
def modelForSequenceClassification(*args, **kwargs):
    r"""
            # Using torch.hub !
            import torch

            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'google-bert/bert-base-uncased')    # Download model and configuration from huggingface.co and cache.
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'google-bert/bert-base-uncased', output_attentions=True)  # Update configuration during loading
            assert model.config.output_attentions == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
            model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """

    return AutoModelForSequenceClassification.from_pretrained(*args, **kwargs)


@add_start_docstrings(AutoModelForQuestionAnswering.__doc__)
def modelForQuestionAnswering(*args, **kwargs):
    r"""
        # Using torch.hub !
        import torch

        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'google-bert/bert-base-uncased')    # Download model and configuration from huggingface.co and cache.
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'google-bert/bert-base-uncased', output_attentions=True)  # Update configuration during loading
        assert model.config.output_attentions == True
        # Loading from a TF checkpoint file instead of a PyTorch model (slower)
        config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
        model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

    """
    return AutoModelForQuestionAnswering.from_pretrained(*args, **kwargs)