File size: 2,461 Bytes
3cca448
9b5b26a
 
 
c19d193
beb96cc
4686f11
6aae614
c5b256d
8fe992b
9b5b26a
 
 
 
6bb4b14
 
9b5b26a
6bb4b14
9b5b26a
 
6bb4b14
 
 
d375f85
 
 
beb96cc
d375f85
 
9b5b26a
6bb4b14
8c01ffb
c5b256d
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
6aae614
ae7a494
 
 
 
e121372
1b14191
bf6d34c
 
c5b256d
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
3cca448
7dd5763
8c01ffb
 
 
 
 
861422e
8fe992b
 
9b5b26a
fe7264b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from smolagents import CodeAgent, DuckDuckGoSearchTool, VisitWebpageTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
import PyPDF2
import os
from tools.final_answer import FinalAnswerTool
from dateutil.parser import parse

from Gradio_UI import GradioUI


@tool
def extract_text_from_pdf(file_path: str) -> str:
    """Reads a PDF file and extracts its text.
    Args:
        file_path: The path to the PDF file.
    """
    try:
        with open(file_path, "rb") as file:
            reader = PyPDF2.PdfReader(file)
            text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
        
        # Check if text was extracted
        if text:
            return f"Extracted text from the PDF: {text[:500]}"  # Show first 500 caracters
        else:
            return "No text found in the PDF."
    except Exception as e:
        return f"Error reading PDF: {str(e)}"

@tool
def days_ago(date: str) -> int:
    """
    Gets how many days ago is the the date in question. If the result is negative, then it's in the future.
    Args:
        date: The date in mm/dd/yyyy format as a string
    Output: the # of days ago as a int.
    
    """
    try:
        return (datetime.datetime.today() - parse(date)).days
    except Exception as e:
        return f"Error parsing date, see error: {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
token= os.getenv('Token'),
max_tokens=2096,
temperature=0.5,
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, extract_text_from_pdf, DuckDuckGoSearchTool(), VisitWebpageTool(), days_ago], ## add your tools here (don't remove final answer)
    max_steps=10,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent, file_upload_folder="data/").launch()