Spaces:
Runtime error
Runtime error
File size: 12,099 Bytes
8e10d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import copy
from codeScripts.Dependencies.SentenceTransformer2 import *
from codeScripts.utils import create_file_path, clean_words, save_json
#Done
class SemanticOutput():
"""
Class to store the semantic processing and extract results
"""
def __init__(self, settings):
self.nota_spacy = dict()
self.nota_spacy["spacy"] = dict()
self.nota_spacy["bert"] = dict()
self.nota_spacy_experimento = dict()
self.nota_spacy_experimento["spacy"] = dict()
self.nota_spacy_experimento["bert"] = dict()
self.identifyLineofResponse = dict()
self.identifyLineofResponse["spacy"] = dict()
self.identifyLineofResponse["bert"] = dict()
self.identifyLineofResponse_toexcel = []
self.notas_calculadas = dict()
self.notas_calculadas["spacy"] = dict()
self.notas_calculadas["bert"] = dict()
self.min_umbral = []
self.max_umbral = []
r= settings.UmbralesSimilitud.split(",")
for i in r:
c_w= clean_words(i)
self.min_umbral.append(float(c_w[0]+'.'+c_w[1]))
self.max_umbral.append(float(c_w[2]+'.'+c_w[3]))
self.notas_calculadas["spacy"]['Umbral ' + c_w[0]+'.'+c_w[1] + ' - ' + c_w[2]+'.'+c_w[3]] = []
self.notas_calculadas["bert"]['Umbral ' + c_w[0]+'.'+c_w[1] + ' - ' + c_w[2]+'.'+c_w[3]] = []
#variables taken from the settings
self.answersDF_json2 = dict()
self.answersDF_json2["spacy"] = dict()
self.answersDF_json2["bert"] = dict()
self.indiceMinipreguntas = settings.indice_minipreguntas
print("AAAAAAAAAAAA")
print(self.indiceMinipreguntas)
self.LofRespThreshold = settings.LofRespThreshold
self.indx = 1
def __createDict__(self, nota_spacy:dict(), studentID, minipregunta, similarity_type, type = 0):
if studentID not in nota_spacy[similarity_type].keys():
nota_spacy[similarity_type][studentID] = dict()
if type == 0:
nota_spacy[similarity_type][studentID][minipregunta]= []
else:
nota_spacy[similarity_type][studentID][minipregunta]= dict()
return nota_spacy
def __plotHistogram__(self, save_file, x):
"""
Generates an histogram of the given data.
Inputs:
save_file: The path where the histogram is to be generated.
x: The data to be represented.
"""
ax= sns.histplot(
data = x,
stat = "count",
kde = True,
color = "black"
)
ax.set(xlabel='Deviation', ylabel='Count')
figure = ax.get_figure()
figure.savefig(create_file_path(save_file,3))
del figure
ax.cla()
def initInforms(self, studentID, minipregunta, similarity_type):
"""
This function is for initializing the variables where data is to be stored.
Inputs:
studentID: The id of the student
minipregunta: The minipregunta that is being studied
"""
#identificar donde está la respuesta por minipreguta
self.identifyLineofResponse = self.__createDict__(self.identifyLineofResponse, studentID, minipregunta, similarity_type, 1)
#almacenar notas del evaluation process
#self.nota_spacy_experimento = self.__createDict__(self.nota_spacy_experimento, studentID, similarity_type, 1)
self.nota_spacy_experimento[similarity_type][studentID] = dict()
#Almacenar similitudes por minipregunta
self.nota_spacy = self.__createDict__(self.nota_spacy, studentID, minipregunta, similarity_type)
#separar y almacenar una a una las lineas de la respuesta
self.answersDF_json2[similarity_type][studentID] = dict()
self.answersDF_json2[similarity_type][studentID]["respuesta"] = dict()
def updateInformsBucle(self, studentID, minipregunta, response, response_label, numberOfSentences, similarity, similarity_type, isMaxSimil):
"""
This function is the previous needed step before using updateInforms. Stores the important iterative-generated information
Inputs:
-studentID: The id of the student
-minipregunta: The minipregunta that is being studied
-response: The student's response
-response_label: The generated label that indicates the sentence number of the extracted response in the text.
-numberOfSentences: The number of splitted sentences.
-similarity: The obtained similarity score.
-isMaxSimil: If the similarity score is the highest obtained at the moment or not.
"""
#Storing the similarity score obtained for only one sentence
if numberOfSentences == 1:
self.identifyLineofResponse[similarity_type][studentID][minipregunta][str(self.indx)] = dict()
self.identifyLineofResponse[similarity_type][studentID][minipregunta][str(self.indx)]["Similitud"] = similarity
self.identifyLineofResponse[similarity_type][studentID][minipregunta][str(self.indx)]["Frase"] = response
self.identifyLineofResponse[similarity_type][studentID][minipregunta][str(self.indx)]["Lineas"] = response_label
self.answersDF_json2[similarity_type][studentID]["respuesta"][self.indx] = response
self.indx+=1
else:
self.indx = 1
#storing the maximum similarity for each set of sentences length
if isMaxSimil:
self.nota_spacy_experimento[similarity_type][studentID][str(numberOfSentences)] = dict()
self.nota_spacy_experimento[similarity_type][studentID][str(numberOfSentences)]["MaxSimilitud"] = similarity
self.nota_spacy_experimento[similarity_type][studentID][str(numberOfSentences)]["Frase"] = response
self.nota_spacy_experimento[similarity_type][studentID][str(numberOfSentences)]["Lineas"] = response_label
#storing the similarity in every case
self.nota_spacy[similarity_type][studentID][minipregunta].append([response, None, None] if response == "" else [response, similarity, response_label])
def updateInforms(self, studentID, umbralL, umbralH, calculatedMark, similarity_type, response = ""):
"""
This function is to store the obtained results from the processing of one response.
Inputs:
-studentID: The id of the student
-umbralL: The fixed low threshold (config json)
-umbralH: The fixed high threshold (config json)
-calculatedMark: The calculated mark.
-response: The student's response
"""
print("ZZZZZ")
print(similarity_type)
#storing calculated marks
self.notas_calculadas[similarity_type]['Umbral ' + str(umbralL) + ' - ' + str(umbralH)].append(0 if response == "" else calculatedMark/len(self.indiceMinipreguntas))
#storing where the model thought the answer was
for minipregunta in self.indiceMinipreguntas:
print("EEEEE")
print(self.identifyLineofResponse)
aux = copy.deepcopy(self.identifyLineofResponse)
for indx in aux[similarity_type][studentID][minipregunta].keys():
if abs(self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]["Similitud"] - self.nota_spacy_experimento[similarity_type][studentID]["1"]["MaxSimilitud"]) > 0.075:
del self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]
#Getting the number of the guess
if response == "":
self.identifyLineofResponse_toexcel.append([minipregunta, ""])
else:
max_n = -999999
indx_queue = 0
queue = []
highlightedrows = ""
highlightedmarks = ""
for iter in self.identifyLineofResponse[similarity_type][studentID][minipregunta].keys():
for indx in self.identifyLineofResponse[similarity_type][studentID][minipregunta].keys():
if self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]["Similitud"] > max_n and not indx in queue and self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]["Similitud"]>self.LofRespThreshold:
max_n = self.identifyLineofResponse[similarity_type][studentID][minipregunta][indx]["Similitud"]
indx_queue = indx
queue.append(indx_queue)
highlightedrows = highlightedrows + str(indx_queue) + " "
highlightedmarks = highlightedmarks + str(max_n) + " "
max_n = -999999
indx_queue = 0
self.identifyLineofResponse_toexcel.append([minipregunta, highlightedrows, highlightedmarks])
highlightedrows = ""
highlightedmarks = ""
queue = []
def saveSimilarityResults(self, settings, similarity_type):
"""
Saves the recopiled data in the corresponding format and path differentiating the types of semantic calculation.
Inputs:
-settings: system settings.
-similarity_type: "spacy" if similarity is being calculated from Spacy (if it is not, bert is selected)
"""
savePrefix = "Spacy - " if similarity_type == "spacy" else str(settings.modelr) + str(settings.epochr) + " - "
#previous name - "AnalisisSemantico.json"
save_json(create_file_path(savePrefix + "SimilitudPorConjunto.json",2), self.nota_spacy[similarity_type])
save_json(create_file_path(savePrefix + "MaxSimilitudPorConjunto.json",2), self.nota_spacy_experimento[similarity_type])
save_json(create_file_path(savePrefix + "LineaRespuesta.json",2), self.identifyLineofResponse[similarity_type])
save_json(create_file_path(savePrefix + "RespuestaSeparadaPorFrases.json",2), self.answersDF_json2[similarity_type])
Notasdf = pd.DataFrame()
for intervaloUmbral in self.notas_calculadas[similarity_type]:
Notasdf[intervaloUmbral] = self.notas_calculadas[similarity_type][intervaloUmbral]
Notasdf.to_excel(create_file_path(savePrefix +'NotasCalculadas.xlsx',2), sheet_name='notas')
#self.__plotHistogram__(savePrefix + "HistogramaNotasGeneradas.png", self.notas_calculadas[similarity_type])
class SintacticOutput():
"""
Class to store the sintactic processing
"""
def __init__(self):
self.leg_FH =[]
self.leg_mu = []
def saveLegibilityResults(self):
"""
Saves the recopiled data in the corresponding format.
"""
save_json(create_file_path("FH-Readability.json",2), self.leg_FH, False)
save_json(create_file_path("mu-Readability.json",2), self.leg_mu, False)
x = []
for i in range(len(self.leg_FH)):
x.append(i)
plt.figure(figsize=(15,7))
plt.plot(x, self.leg_FH, label = "FH", color = (0.1,0.1,0.1))
plt.plot(x, self.leg_mu, '--', label = "mu", color = (0.5,0.5,0.5))
plt.xlabel("Student")
plt.ylabel("Legibility (0-100)")
plt.legend(loc=1)
plt.title("FH vs mu")
plt.xticks(rotation=-45)
plt.grid()
plt.savefig(create_file_path("Img_FHvsMu.png",3))
plt.cla()
class OrtographicOutput():
"""
Class to store the ortographic processing
"""
def __init__(self):
self.notaOrtografia = []
self.mistakes = []
self.number_mistakes = []
def saveOrtographicResults(self):
"""
Saves the ortographic generated marks.
"""
save_json(create_file_path("NotasOrtografia.json",2), self.notaOrtografia, False)
|