File size: 9,596 Bytes
25f28ea
 
 
 
 
 
 
 
 
15ffeb9
909a9a7
 
25f28ea
1b6df82
25f28ea
 
909a9a7
25f28ea
15ffeb9
 
25f28ea
110d7be
 
c93186d
110d7be
 
1b6df82
 
 
 
 
 
 
 
 
 
 
 
110d7be
 
c93186d
110d7be
 
25f28ea
 
909a9a7
1b6df82
 
 
25f28ea
 
909a9a7
 
 
 
 
 
25f28ea
 
 
909a9a7
 
 
 
 
 
 
 
 
0562415
909a9a7
 
 
 
 
 
 
 
 
 
 
 
 
25f28ea
15ffeb9
 
 
 
 
 
 
1b6df82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f28ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b6df82
 
 
 
 
 
 
25f28ea
 
 
909a9a7
 
25f28ea
 
1b6df82
909a9a7
25f28ea
 
 
909a9a7
25f28ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
import json
from flask import jsonify
from sentence_transformers import SentenceTransformer, InputExample, util
from codeScripts.utils import save_json, load_json, create_file_path
from plentas import Plentas
import pandas as pd
import zipfile
import os
import shutil
from datetime import datetime
import tablib

def Main(uploadedFile, txtFileInput, orthographyPercentage, syntaxPercentage, semanticPercentage, studentsRange):
  
    error = ""
    excelPath  = ""

    copySpanishDictionaries()

    try:        
        if not txtFileInput:
           error="Por favor seleccione un archivo con las preguntas y respuestas"
           return [error, excelPath]
        else:
            txtFileInput = txtFileInput.name

        configuration = readQATextFile(txtFileInput)

        configuration["ortographyPercentage"] = float(orthographyPercentage)
        configuration["syntaxPercentage"] = float(syntaxPercentage)
        configuration["semanticPercentage"] = float(semanticPercentage)

        if studentsRange == "":
            studentsRange = "All"

        configuration["students"] = studentsRange

        if not uploadedFile:
            error="Por favor seleccione el .zip con las respuestas de los alumnos"
            return [error, excelPath]
        else:
            uploadedFilePath = uploadedFile.name
                     
        config_json = load_json("configV2.json")
        
        # #configuring plentas methodology
        response = Plentas(config_json[0], [answersTodict(uploadedFilePath), createTeacherJson(configuration)])
        # # #overwriting the custom settings for the settings from the api      
        response.setApiSettings(configuration)
    
        modelResult = response.processApiData()

        # modelJson = json.dumps(modelResult)
        
        excelPath = exportResultToExcelFile(modelResult)

    except Exception as e:
        error = "Oops: " + str(e)
    
    return [error, excelPath]

def exportResultToExcelFile(modelResult):

    excelData = []

    studentsArray = modelResult[0]
    index = 0
    for item in studentsArray:
        #print("ITEM - " + str(item))
        studentData = item[index]
        excelData.append(studentData)
        index+= 1

    tableResults = tablib.Dataset(headers=('ID', 'SimilitudSpacy', 'SimilitudBert', 'NotaSemanticaSpacy', 'NotaSemanticaBert', 'NotaSintaxis', 'NotaOrtografia','NotaTotalSpacy','NotaTotalBert','Feedback'))
    tableResults.json=json.dumps(excelData)
    tableExport=tableResults.export('xlsx')
    outputFilePath = './output/' + str(datetime.now().microsecond) + '_plentas_output.xlsx'
    # outputFilePath = './output/plentas_output.xlsx'
    with open(outputFilePath, 'wb') as f:  # open the xlsx file
        f.write(tableExport)  # write the dataset to the xlsx file
    f.close()
    return outputFilePath

def copySpanishDictionaries():
    try:
        shutil.copy("./assets/hunspell_dictionaries/es_ES/es_ES.aff", "/home/user/.local/lib/python3.8/site-packages/hunspell/dictionaries/es_ES.aff")
        shutil.copy("./assets/hunspell_dictionaries/es_ES/es_ES.dic", "/home/user/.local/lib/python3.8/site-packages/hunspell/dictionaries/es_ES.dic")
    except Exception as ex:
        print("Error copying dictionaries" + str(ex))

def readQATextFile(qaTextFilePath):
    configuration = {}

    f = open(qaTextFilePath, 'r')
    lines = f.readlines()

    count = 0
    qCount=1
    
    q = ""
    a = ""
    while count < len(lines):
        if q == "" or q == "\n":
            q = lines[count]
            count += 1
            continue

        if a == "" or a == "\n":
            a = lines[count]
            count += 1            
            
        if q != "" and a != "":
            configuration["minip" + str(qCount)] = q
            configuration["minir" + str(qCount)] = a
            qCount += 1
            q = ""
            a = ""
    
    return configuration

def createTeacherJson(configuration):
    """

    This function extracts the information about the subquestions and subanswers and puts them in the correct format.

    Inputs:

        config: The configured info from the api.

    Outputs:

        teachersJson: The generated dictionary with the subquestions.

    """
    teachersJson = {"enunciado": "", "minipreguntas":[], "keywords":""}

    #5 is the maximum number of permitted subquestions in the configuration2 page
    
    for i in range(5):
       
        try:
            teachersJson["minipreguntas"].append({
				"minipregunta": configuration["minip" + str(i+1)],
				"minirespuesta": configuration["minir" + str(i+1)]
			})

        except:
            break

    return teachersJson

def extractZipData(ruta_zip):
    """

    This function extracts the students's answers from the zip file (the one the teacher has in the task section).

    Inputs:

        ruta_zip: The path inherited from answersTodict

    """
    #defining the path where the extracted info is to be stored
    ruta_extraccion = create_file_path("StudentAnswers/", doctype= 1)
    #extracting the info
    archivo_zip = zipfile.ZipFile(ruta_zip, "r")
    try:
        archivo_zip.extractall(pwd=None, path=ruta_extraccion)
    except:
        pass
    archivo_zip.close()
    
def removeHtmlFromString(string):
    """

    This function removes the html tags from the student's response.

    Inputs:

        -string: The student's response

    Outputs:

        -new_string: The filtered response

    """
    string = string.encode('utf-8', 'replace')
    string = string.decode('utf-8', 'replace')
    new_string = ""
    skipChar = 0
    for char in string:
        if char == "<":
            skipChar = 1
        elif char == ">":
            skipChar = 0
        else:
            if not skipChar:        
                new_string = new_string+char

    new_string = new_string.encode('utf-8', 'replace')
    new_string = new_string.decode('utf-8', 'replace')
    return new_string

def answersTodict(zip_path):
    """

    This function extracts the students's answers and stacks them in one specific format so that it can be processed next.

    Inputs:

        ruta_zip: The path where the zip file is stored

    Outputs:

        studentAnswersDict: The dictionary with all the responses

    """
    #extracting the data
    extractZipData(zip_path)
    
    studentAnswersDict = []

    #stacking the information of each extracted folder
    for work_folder in os.listdir(create_file_path("StudentAnswers/", doctype= 1)):
        for student, indx in zip(os.listdir(create_file_path("StudentAnswers/" + work_folder, doctype= 1)), range(len(os.listdir(create_file_path("StudentAnswers/" + work_folder, doctype= 1))))):
            student_name = student.split("(")
            student_name = student_name[0]
            try:
                #opening the file

                #fichero = open(create_file_path("StudentAnswers/" + work_folder + "/" + student + "/" + 'comments.txt', doctype= 1))
                #where the actual response is
                fichero = open(create_file_path("StudentAnswers/" + work_folder + "/" + student + "/" + 'Adjuntos del envio/Respuesta enviada', doctype= 1), encoding='utf-8')                
                #reading it
                lineas = fichero.readlines()

                #removing html                
                lineas[0] = removeHtmlFromString(lineas[0])           
                                
                #saving it                                
                studentAnswersDict.append({"respuesta":lineas[0], "hashed_id":student_name, "TableIndex":indx})

            except:
                studentAnswersDict.append({"respuesta":"", "hashed_id":student_name, "TableIndex":indx})

    #saving the final dictionary
    save_json(create_file_path('ApiStudentsDict.json', doctype= 1),studentAnswersDict)
    return studentAnswersDict


zipFileInput = gr.inputs.File(label="1. Selecciona el .ZIP con las respuestas de los alumnos")
txtFileInput = gr.inputs.File(label="2. Selecciona el .txt con las preguntas y respuestas correctas. Escriba una pregunta en una sola línea y debajo la respuesta en la línea siguiente.")
orthographyPercentage = gr.inputs.Textbox(label="Ortografía",lines=1, placeholder="0",default=0.1, numeric=1)
syntaxPercentage = gr.inputs.Textbox(label="Sintaxis",lines=1, placeholder="0",default=0.1,numeric=1)
semanticPercentage = gr.inputs.Textbox(label="Semántica",lines=1, placeholder="0",default=0.8, numeric=1)
studentsRange = gr.inputs.Textbox(label="Estudiantes a evaluar",lines=1, placeholder="Dejar vacío para evaluar todos")
#dataFrameOutput = gr.outputs.Dataframe(headers=["Resultados"], max_rows=20, max_cols=None, overflow_row_behaviour="paginate", type="pandas", label="Resultado")

labelOutput = gr.outputs.Label(num_top_classes=None, type="auto", label="")
labelError = gr.outputs.Label(num_top_classes=None, type="auto", label="Errores")
downloadExcelButton = gr.outputs.File('Resultados')

iface = gr.Interface(fn=Main
    , inputs=[zipFileInput, txtFileInput, orthographyPercentage, syntaxPercentage, semanticPercentage, studentsRange]
    , outputs=[labelError, downloadExcelButton]
    , title = "PLENTAS"
)

#iface.launch(share = False,enable_queue=True, show_error =True, server_port= 7861)
iface.launch(share = False,enable_queue=True, show_error =True)