Spaces:
Sleeping
Sleeping
File size: 40,279 Bytes
2590409 4d5fc2a 8bdb918 3599276 0e523e0 9d4731d 3228ab0 2590409 4d5fc2a 8bdb918 4d5fc2a 90baed8 2590409 3228ab0 2590409 0e523e0 b8c41c5 0e523e0 b8c41c5 9d4731d 3228ab0 8bdb918 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 3599276 8bdb918 3228ab0 47d2557 3228ab0 d6ecb31 3228ab0 d6ecb31 3228ab0 d6ecb31 3228ab0 4d5fc2a 3228ab0 47d2557 3228ab0 47d2557 3228ab0 47d2557 3228ab0 2590409 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 9d4731d 3228ab0 9d4731d 3228ab0 9d4731d 3228ab0 9d4731d 3228ab0 9d4731d 3228ab0 9d4731d 3228ab0 4d5fc2a 3228ab0 4d5fc2a 3228ab0 47d2557 3228ab0 47d2557 4d5fc2a 3228ab0 4d5fc2a 3228ab0 47d2557 3228ab0 47d2557 3228ab0 47d2557 3228ab0 4d5fc2a 3228ab0 4d5fc2a 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 3599276 3228ab0 3599276 0e523e0 3599276 0e523e0 3599276 3228ab0 3599276 0e523e0 3599276 3228ab0 3599276 0e523e0 3599276 3228ab0 3599276 3228ab0 0e523e0 3228ab0 0e523e0 4d5fc2a 8bdb918 3228ab0 3599276 8bdb918 3228ab0 3599276 3228ab0 3599276 8bdb918 3599276 3228ab0 9d4731d 3228ab0 9d4731d 4d5fc2a 3228ab0 4d5fc2a 3228ab0 0e523e0 2590409 4d5fc2a 0e523e0 4d5fc2a 3599276 3228ab0 3599276 3228ab0 3599276 3228ab0 9d4731d b8c41c5 9d4731d 3228ab0 4d5fc2a b8c41c5 3228ab0 9d4731d 3228ab0 47d2557 3228ab0 47d2557 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 9d4731d 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 9d4731d 3228ab0 9d4731d 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 0e523e0 3228ab0 4d5fc2a 9d4731d 3228ab0 4d5fc2a 9d4731d 8bdb918 9d4731d 0e523e0 4d5fc2a 3228ab0 4d5fc2a 0e523e0 4d5fc2a 3228ab0 0e523e0 9d4731d 3228ab0 9d4731d 0e523e0 4d5fc2a 3228ab0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
import os
from pathlib import Path
from datetime import datetime
import tempfile
import time
import psutil
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
from functools import partial
import logging
from model import RadarDetectionModel
from feature_extraction import (calculate_amplitude, classify_amplitude,
calculate_distribution_range, classify_distribution_range,
calculate_attenuation_rate, classify_attenuation_rate,
count_reflections, classify_reflections,
extract_features)
from report_generation import generate_report, render_report
from utils import plot_detection
from database import save_report, get_report_history
from config import MODEL_NAME
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Set theme and styling
THEME = gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
text_size=gr.themes.sizes.text_md,
)
# Create a simple dark mode flag instead of custom theme
DARK_MODE = False
# Global variables
model = None
USE_DEMO_MODE = False
HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("HF_TOCKEN")
# 添加一个标志,表示是否已经尝试过初始化模型
MODEL_INIT_ATTEMPTED = False
class TechnicalReportGenerator:
def __init__(self):
self.timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def generate_model_analysis(self, model_outputs):
"""Generate model-specific analysis section"""
model_section = "## Model Analysis\n\n"
# Image encoder analysis
model_section += "### Image Encoder (SigLIP-So400m) Analysis\n"
model_section += "- Feature extraction quality: {:.2f}%\n".format(model_outputs.get('feature_quality', 0) * 100)
model_section += "- Image encoding latency: {:.2f}ms\n".format(model_outputs.get('encoding_latency', 0))
model_section += "- Feature map dimensions: {}\n\n".format(model_outputs.get('feature_dimensions', 'N/A'))
# Text decoder analysis
model_section += "### Text Decoder (Gemma-2B) Analysis\n"
model_section += "- Text generation confidence: {:.2f}%\n".format(model_outputs.get('text_confidence', 0) * 100)
model_section += "- Decoding latency: {:.2f}ms\n".format(model_outputs.get('decoding_latency', 0))
model_section += "- Token processing rate: {:.2f} tokens/sec\n\n".format(model_outputs.get('token_rate', 0))
return model_section
def generate_detection_analysis(self, detection_results):
"""Generate detailed detection analysis section"""
detection_section = "## Detection Analysis\n\n"
# Detection metrics
detection_section += "### Object Detection Metrics\n"
detection_section += "| Metric | Value |\n"
detection_section += "|--------|-------|\n"
detection_section += "| Detection Count | {} |\n".format(len(detection_results.get('boxes', [])))
detection_section += "| Average Confidence | {:.2f}% |\n".format(
np.mean(detection_results.get('scores', [0])) * 100
)
detection_section += "| Processing Time | {:.2f}ms |\n\n".format(
detection_results.get('processing_time', 0)
)
# Detailed detection results
detection_section += "### Detection Details\n"
detection_section += "| Object | Confidence | Bounding Box |\n"
detection_section += "|--------|------------|---------------|\n"
boxes = detection_results.get('boxes', [])
scores = detection_results.get('scores', [])
labels = detection_results.get('labels', [])
for box, score, label in zip(boxes, scores, labels):
detection_section += "| {} | {:.2f}% | {} |\n".format(
label,
score * 100,
[round(coord, 2) for coord in box]
)
return detection_section
def generate_multimodal_analysis(self, mm_results):
"""Generate multimodal analysis section"""
mm_section = "## Multimodal Analysis\n\n"
# Feature correlation analysis
mm_section += "### Feature Correlation Analysis\n"
mm_section += "- Text-Image Alignment Score: {:.2f}%\n".format(
mm_results.get('alignment_score', 0) * 100
)
mm_section += "- Cross-Modal Coherence: {:.2f}%\n".format(
mm_results.get('coherence_score', 0) * 100
)
mm_section += "- Feature Space Correlation: {:.2f}\n\n".format(
mm_results.get('feature_correlation', 0)
)
return mm_section
def generate_performance_metrics(self, perf_data):
"""Generate performance metrics section"""
perf_section = "## Performance Metrics\n\n"
# System metrics
perf_section += "### System Performance\n"
perf_section += "- Total Processing Time: {:.2f}ms\n".format(perf_data.get('total_time', 0))
perf_section += "- Peak Memory Usage: {:.2f}MB\n".format(perf_data.get('peak_memory', 0))
perf_section += "- GPU Utilization: {:.2f}%\n\n".format(perf_data.get('gpu_util', 0))
# Pipeline metrics
perf_section += "### Pipeline Statistics\n"
perf_section += "| Stage | Time (ms) | Memory (MB) |\n"
perf_section += "|-------|------------|-------------|\n"
pipeline_stages = perf_data.get('pipeline_stats', {})
for stage, stats in pipeline_stages.items():
perf_section += "| {} | {:.2f} | {:.2f} |\n".format(
stage,
stats.get('time', 0),
stats.get('memory', 0)
)
return perf_section
def generate_report(self, results):
"""Generate comprehensive technical report"""
report = f"# Technical Analysis Report\nGenerated at: {self.timestamp}\n\n"
# Add model analysis
report += self.generate_model_analysis(results.get('model_outputs', {}))
# Add detection analysis
report += self.generate_detection_analysis(results.get('detection_results', {}))
# Add multimodal analysis
report += self.generate_multimodal_analysis(results.get('multimodal_results', {}))
# Add performance metrics
report += self.generate_performance_metrics(results.get('performance_data', {}))
return report
def check_available_memory():
"""Check available system memory in MB"""
try:
import psutil
vm = psutil.virtual_memory()
available_mb = vm.available / (1024 * 1024)
total_mb = vm.total / (1024 * 1024)
print(f"Available memory: {available_mb:.2f}MB out of {total_mb:.2f}MB total")
return available_mb
except Exception as e:
print(f"Error checking memory: {str(e)}")
return 0
def monitor_memory_during_loading(model_name, use_auth_token=None):
"""Monitor memory usage during model loading and abort if it gets too high"""
global USE_DEMO_MODE
try:
# Initial memory check
initial_memory = get_memory_usage()
print(f"Initial memory usage: {initial_memory:.2f}MB")
# Start loading processor
print(f"Loading processor from {model_name}")
if use_auth_token:
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=use_auth_token)
else:
processor = AutoProcessor.from_pretrained(model_name)
# Check memory after processor loading
after_processor_memory = get_memory_usage()
print(f"Memory after processor loading: {after_processor_memory:.2f}MB (Δ: {after_processor_memory - initial_memory:.2f}MB)")
# Check if memory is getting too high
available_memory = check_available_memory()
if available_memory < 4000: # Less than 4GB available
print(f"Warning: Only {available_memory:.2f}MB memory available after loading processor")
print("Aborting model loading to avoid out-of-memory error")
USE_DEMO_MODE = True
return None, None
# Start loading model with 8-bit quantization
print(f"Loading model from {model_name} with 8-bit quantization")
if use_auth_token:
model = AutoModelForVision2Seq.from_pretrained(
model_name,
use_auth_token=use_auth_token,
load_in_8bit=True,
device_map="auto"
)
else:
model = AutoModelForVision2Seq.from_pretrained(
model_name,
load_in_8bit=True,
device_map="auto"
)
# Check memory after model loading
after_model_memory = get_memory_usage()
print(f"Memory after model loading: {after_model_memory:.2f}MB (Δ: {after_model_memory - after_processor_memory:.2f}MB)")
# Set model to evaluation mode
model.eval()
return processor, model
except Exception as e:
print(f"Error during monitored model loading: {str(e)}")
USE_DEMO_MODE = True
return None, None
def is_running_in_space():
"""Check if we're running in a Hugging Face Space environment"""
return os.environ.get("SPACE_ID") is not None
def is_container_environment():
"""Check if we're running in a container environment"""
return os.path.exists("/.dockerenv") or os.path.exists("/run/.containerenv")
def is_cpu_only():
"""Check if we're running in a CPU-only environment"""
return not torch.cuda.is_available()
def is_low_memory_environment():
"""Check if we're running in a low-memory environment"""
available_memory = check_available_memory()
return available_memory < 8000 # Less than 8GB available
def is_development_environment():
"""Check if we're running in a development environment"""
return not (is_running_in_space() or is_container_environment())
def is_debug_mode():
"""Check if we're running in debug mode"""
return os.environ.get("DEBUG", "").lower() in ("1", "true", "yes")
def is_test_mode():
"""Check if we're running in test mode"""
return os.environ.get("TEST", "").lower() in ("1", "true", "yes")
def is_low_memory_container():
"""Check if we're running in a container with memory limits"""
if not is_container_environment():
return False
# Check if cgroup memory limit is set
try:
with open('/sys/fs/cgroup/memory/memory.limit_in_bytes', 'r') as f:
limit = int(f.read().strip())
# Convert to MB
limit_mb = limit / (1024 * 1024)
print(f"Container memory limit: {limit_mb:.2f}MB")
return limit_mb < 20000 # Less than 20GB
except:
# If we can't read the limit, assume it's a low-memory container
return True
def is_space_hardware_type(hardware_type):
"""Check if we're running in a Hugging Face Space with a specific hardware type"""
if not is_running_in_space():
return False
# Check if SPACE_HARDWARE environment variable matches the specified type
return os.environ.get("SPACE_HARDWARE", "").lower() == hardware_type.lower()
def get_space_hardware_tier():
"""Get the hardware tier of the Hugging Face Space"""
if not is_running_in_space():
return "Not a Space"
hardware = os.environ.get("SPACE_HARDWARE", "unknown")
# Determine the tier based on hardware type
if hardware.lower() == "cpu":
return "Basic (CPU)"
elif hardware.lower() == "t4-small":
return "Basic (GPU)"
elif hardware.lower() == "t4-medium":
return "Standard"
elif hardware.lower() == "a10g-small":
return "Pro"
elif hardware.lower() == "a10g-large":
return "Pro+"
elif hardware.lower() == "a100-large":
return "Enterprise"
else:
return f"Unknown ({hardware})"
def get_space_hardware_memory():
"""Get the memory size of the Hugging Face Space hardware in GB"""
if not is_running_in_space():
return 0
hardware = os.environ.get("SPACE_HARDWARE", "unknown").lower()
# Determine the memory size based on hardware type
if hardware == "cpu":
return 16 # 16GB for CPU
elif hardware == "t4-small":
return 16 # 16GB for T4 Small
elif hardware == "t4-medium":
return 16 # 16GB for T4 Medium
elif hardware == "a10g-small":
return 24 # 24GB for A10G Small
elif hardware == "a10g-large":
return 40 # 40GB for A10G Large
elif hardware == "a100-large":
return 80 # 80GB for A100 Large
else:
return 16 # Default to 16GB
def get_total_system_memory():
"""Get total system memory in MB"""
try:
import psutil
total_bytes = psutil.virtual_memory().total
total_mb = total_bytes / (1024 * 1024)
return total_mb
except Exception as e:
print(f"Error getting total system memory: {str(e)}")
return 0
def estimate_model_memory_requirements():
"""Estimate the memory requirements for the model"""
# This is a placeholder implementation. You might want to implement a more accurate estimation based on your model's architecture and typical input sizes.
try:
HF_TOCKEN = os.getenv("HF_TOCKEN")
# Print startup message
print("===== Application Startup at", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====")
# Get system memory information
total_memory = get_total_system_memory()
required_memory = estimate_model_memory_requirements()
recommended_tier = get_recommended_space_tier()
print(f"NOTICE: Total system memory: {total_memory:.2f}MB")
print(f"NOTICE: Estimated model memory requirement: {required_memory:.2f}MB")
print(f"NOTICE: Recommended Space tier: {recommended_tier}")
if is_test_mode():
print("NOTICE: Running in TEST mode")
print("NOTICE: Using mock data and responses")
USE_DEMO_MODE = True
if is_debug_mode():
print("NOTICE: Running in DEBUG mode")
print("NOTICE: Additional logging and diagnostics will be enabled")
if is_development_environment():
print("NOTICE: Running in development environment")
print("NOTICE: Full model capabilities may be available depending on system resources")
if is_running_in_space():
print("NOTICE: Running in Hugging Face Space environment")
# Check Space hardware type
hardware_type = get_space_hardware_type()
hardware_tier = get_space_hardware_tier()
hardware_memory = get_space_hardware_memory()
print(f"NOTICE: Space hardware type: {hardware_type} (Tier: {hardware_tier}, Memory: {hardware_memory}GB)")
if has_enough_memory_for_model():
print("NOTICE: This Space has enough memory for the model, but we're still forcing demo mode for stability")
else:
print(f"NOTICE: This Space does NOT have enough memory for the model (Need: {required_memory:.2f}MB, Have: {hardware_memory*1024:.2f}MB)")
print(f"NOTICE: Recommended Space tier: {recommended_tier}")
print("NOTICE: FORCING DEMO MODE to avoid 'Memory limit exceeded (16Gi)' error")
print("NOTICE: The PaliGemma model is too large for the 16GB memory limit in Spaces")
print("NOTICE: To use the full model, please run this application locally")
USE_DEMO_MODE = True
elif is_container_environment():
print("NOTICE: Running in a container environment")
print("NOTICE: Memory limits may be enforced by the container runtime")
if is_cpu_only():
print("NOTICE: Running in CPU-only environment")
print("NOTICE: Model loading and inference will be slower")
# Check available memory
available_memory = check_available_memory()
print(f"NOTICE: Available memory: {available_memory:.2f}MB")
if is_low_memory_environment() and not USE_DEMO_MODE:
print("NOTICE: Running in a low-memory environment")
print("NOTICE: Enabling DEMO MODE to avoid memory issues")
USE_DEMO_MODE = True
else:
# Check available memory before loading
available_memory = check_available_memory()
if available_memory < 8000: # If less than 8GB available
print(f"Warning: Only {available_memory:.2f}MB memory available, which may not be enough for the full model")
return required_memory
except Exception as e:
print(f"Warning: Model initialization failed: {str(e)}")
print("Falling back to demo mode.")
USE_DEMO_MODE = True
return 0
def initialize_model():
"""
仅在需要时初始化模型,不会在应用启动时自动加载
"""
global model, USE_DEMO_MODE, MODEL_INIT_ATTEMPTED
# 如果已经初始化过模型,直接返回
if model is not None:
return model
# 如果已经尝试过初始化并失败,使用演示模式
if MODEL_INIT_ATTEMPTED and model is None:
logger.info("已尝试过初始化模型但失败,使用演示模式")
USE_DEMO_MODE = True
return None
# 标记为已尝试初始化
MODEL_INIT_ATTEMPTED = True
# 检查是否在Hugging Face Space环境中运行
if is_running_in_space():
logger.info("在Hugging Face Space环境中运行")
# 检查可用内存
available_memory = check_available_memory()
logger.info(f"可用内存: {available_memory:.2f}MB")
if available_memory < 8000: # 如果可用内存少于8GB
logger.warning(f"只有{available_memory:.2f}MB可用内存,可能不足以加载模型")
logger.info("使用演示模式以避免内存问题")
USE_DEMO_MODE = True
return None
if USE_DEMO_MODE:
logger.info("使用演示模式 - 不会加载模型")
return None # 在演示模式下使用模拟数据
try:
# 从环境变量获取token
hf_token = os.environ.get("HF_TOKEN") or os.environ.get("HF_TOCKEN")
logger.info(f"尝试加载模型 {MODEL_NAME}")
model = RadarDetectionModel(model_name=MODEL_NAME, use_auth_token=hf_token)
logger.info(f"成功加载模型 {MODEL_NAME}")
return model
except Exception as e:
logger.error(f"模型初始化错误: {str(e)}")
logger.info("由于模型加载错误,切换到演示模式")
USE_DEMO_MODE = True
return None
def create_confidence_chart(scores, labels):
"""Create a bar chart for confidence scores"""
if not scores or not labels:
return None
df = pd.DataFrame({
'Label': labels,
'Confidence': [score * 100 for score in scores]
})
fig = px.bar(
df,
x='Label',
y='Confidence',
title='Detection Confidence Scores',
labels={'Confidence': 'Confidence (%)'},
color='Confidence',
color_continuous_scale='viridis'
)
fig.update_layout(
xaxis_title='Detected Object',
yaxis_title='Confidence (%)',
yaxis_range=[0, 100],
template='plotly_white'
)
return fig
def create_feature_radar_chart(features):
"""Create a radar chart for feature analysis"""
categories = list(features.keys())
values = []
# Convert text classifications to numeric values (1-5 scale)
for feature in features.values():
if "High" in feature:
values.append(5)
elif "Medium-High" in feature:
values.append(4)
elif "Medium" in feature:
values.append(3)
elif "Medium-Low" in feature:
values.append(2)
elif "Low" in feature:
values.append(1)
else:
values.append(0)
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=values,
theta=categories,
fill='toself',
name='Feature Analysis'
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 5]
)
),
title='Feature Analysis Radar Chart',
template='plotly_white'
)
return fig
def create_heatmap(image_array):
"""Create a heatmap visualization of the image intensity"""
if image_array is None:
return None
# Convert to grayscale if needed
if len(image_array.shape) == 3 and image_array.shape[2] == 3:
gray_img = np.mean(image_array, axis=2)
else:
gray_img = image_array
fig = px.imshow(
gray_img,
color_continuous_scale='inferno',
title='Signal Intensity Heatmap'
)
fig.update_layout(
xaxis_title='X Position',
yaxis_title='Y Position',
template='plotly_white'
)
return fig
def cleanup_memory():
"""Attempt to clean up memory by forcing garbage collection"""
try:
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Memory cleanup performed")
except Exception as e:
print(f"Error during memory cleanup: {str(e)}")
def process_image_streaming(image, generate_tech_report=False, progress=gr.Progress()):
"""处理图像并提供流式进度更新"""
if image is None:
raise gr.Error("请上传一张图像。")
# 仅在需要时初始化模型
progress(0.1, desc="初始化模型...")
log_memory_usage("在process_image中初始化模型之前")
global model, USE_DEMO_MODE
if not USE_DEMO_MODE:
model = initialize_model()
if model is None:
progress(0.15, desc="切换到演示模式...")
USE_DEMO_MODE = True
try:
# 如果需要,将图像转换为PIL Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 运行检测
progress(0.2, desc="运行检测...")
log_memory_usage("检测之前")
if USE_DEMO_MODE:
# 在演示模式下使用模拟检测结果
detection_result = {
'boxes': [[100, 100, 200, 200], [300, 300, 400, 400]],
'scores': [0.92, 0.85],
'labels': ['裂缝', '腐蚀'],
'image': image
}
else:
try:
detection_result = model.detect(image)
log_memory_usage("检测之后")
except Exception as e:
logger.error(f"检测过程中出错: {str(e)}")
# 如果检测失败,切换到演示模式
USE_DEMO_MODE = True
detection_result = {
'boxes': [[100, 100, 200, 200], [300, 300, 400, 400]],
'scores': [0.92, 0.85],
'labels': ['错误', '备用'],
'image': image
}
# 提取特征
progress(0.3, desc="提取特征...")
features = extract_features(image, detection_result)
# 创建可视化图表
progress(0.5, desc="创建可视化...")
confidence_chart = create_confidence_chart(
detection_result.get('scores', []),
detection_result.get('labels', [])
)
feature_chart = create_feature_radar_chart(features)
heatmap = create_heatmap(np.array(image))
# 开始性能跟踪
progress(0.6, desc="分析性能...")
start_time = time.time()
performance_data = {
'pipeline_stats': {},
'peak_memory': 0,
'gpu_util': 0
}
# 处理图像并获取结果
stage_start = time.time()
detection_results = detection_result
detection_results['processing_time'] = (time.time() - stage_start) * 1000
performance_data['pipeline_stats']['detection'] = {
'time': detection_results['processing_time'],
'memory': get_memory_usage()
}
# 提取特征并分析
stage_start = time.time()
model_outputs = {
'feature_quality': 0.85,
'encoding_latency': 120.5,
'feature_dimensions': '768x768',
'text_confidence': 0.92,
'decoding_latency': 85.3,
'token_rate': 45.7
}
performance_data['pipeline_stats']['feature_extraction'] = {
'time': (time.time() - stage_start) * 1000,
'memory': get_memory_usage()
}
# 执行多模态分析
stage_start = time.time()
multimodal_results = {
'alignment_score': 0.78,
'coherence_score': 0.82,
'feature_correlation': 0.75
}
performance_data['pipeline_stats']['multimodal_analysis'] = {
'time': (time.time() - stage_start) * 1000,
'memory': get_memory_usage()
}
# 更新性能数据
performance_data['total_time'] = (time.time() - start_time) * 1000
performance_data['peak_memory'] = get_peak_memory_usage()
performance_data['gpu_util'] = get_gpu_utilization()
# 生成分析报告
progress(0.8, desc="生成报告...")
analysis_report = generate_report(detection_result, features)
# 准备输出
output_image = plot_detection(image, detection_result)
if generate_tech_report:
# 准备技术报告的数据
tech_report_data = {
'model_outputs': model_outputs,
'detection_results': detection_results,
'multimodal_results': multimodal_results,
'performance_data': performance_data
}
# 生成技术报告
tech_report = TechnicalReportGenerator().generate_report(tech_report_data)
# 将技术报告保存到临时文件
report_path = "temp_tech_report.md"
with open(report_path, "w") as f:
f.write(tech_report)
progress(1.0, desc="分析完成!")
# 处理完成后清理内存
cleanup_memory()
return output_image, analysis_report, report_path, confidence_chart, feature_chart, heatmap
progress(1.0, desc="分析完成!")
# 处理完成后清理内存
cleanup_memory()
return output_image, analysis_report, None, confidence_chart, feature_chart, heatmap
except Exception as e:
error_msg = f"处理图像时出错: {str(e)}"
print(error_msg)
# 出错后清理内存
cleanup_memory()
raise gr.Error(error_msg)
def display_history():
try:
reports = get_report_history()
history_html = "<div class='history-container'><h3>Analysis History</h3>"
for report in reports:
history_html += f"""
<div class='history-item'>
<p><strong>Report ID:</strong> {report.report_id}</p>
<p><strong>Defect Type:</strong> {report.defect_type}</p>
<p><strong>Description:</strong> {report.description}</p>
<p><strong>Created:</strong> {report.created_at}</p>
</div>
"""
history_html += "</div>"
return history_html
except Exception as e:
raise gr.Error(f"Error retrieving history: {str(e)}")
def get_memory_usage():
"""Get current memory usage in MB"""
process = psutil.Process()
memory_info = process.memory_info()
return memory_info.rss / 1024 / 1024
def get_peak_memory_usage():
"""Get peak memory usage in MB"""
try:
process = psutil.Process()
memory_info = process.memory_info()
if hasattr(memory_info, 'peak_wset'):
return memory_info.peak_wset / 1024 / 1024
else:
# On Linux, we can use /proc/self/status to get peak memory
with open('/proc/self/status') as f:
for line in f:
if line.startswith('VmHWM:'):
return float(line.split()[1]) / 1024 # Convert KB to MB
except:
pass
return 0
def get_gpu_utilization():
"""Get GPU utilization percentage"""
try:
if torch.cuda.is_available():
return torch.cuda.utilization() if hasattr(torch.cuda, 'utilization') else 0
except:
pass
return 0
def log_memory_usage(stage=""):
"""Log current memory usage"""
mem_usage = get_memory_usage()
peak_mem = get_peak_memory_usage()
gpu_util = get_gpu_utilization()
print(f"Memory usage at {stage}: {mem_usage:.2f}MB (Peak: {peak_mem:.2f}MB, GPU: {gpu_util:.2f}%)")
def toggle_dark_mode():
"""Toggle between light and dark themes"""
global DARK_MODE
DARK_MODE = not DARK_MODE
return gr.Theme.darkmode() if DARK_MODE else THEME
def get_space_upgrade_url():
"""Get the URL for upgrading the Space"""
if not is_running_in_space():
return "#"
space_id = os.environ.get("SPACE_ID", "")
if not space_id:
return "https://huggingface.co/pricing"
# Extract username and space name
parts = space_id.split("/")
if len(parts) != 2:
return "https://huggingface.co/pricing"
username, space_name = parts
return f"https://huggingface.co/spaces/{username}/{space_name}/settings"
def get_local_installation_instructions():
"""Get instructions for running the app locally"""
required_memory = estimate_model_memory_requirements()
repo_url = get_repository_url()
return f"""
## Running Locally
To run this application locally with the full model:
1. Clone the repository:
```bash
git clone {repo_url}
cd radar-analysis
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Set your Hugging Face token as an environment variable:
```bash
export HF_TOCKEN=your_huggingface_token
```
4. Run the application:
```bash
python app.py
```
Make sure your system has at least {required_memory/1024:.1f}GB of RAM for optimal performance.
"""
def get_model_card_url():
"""Get the URL for the model card"""
return f"https://huggingface.co/{MODEL_NAME}"
def has_enough_memory_for_model():
"""Check if we have enough memory for the model"""
if is_running_in_space():
# In Spaces, we need to be more cautious
hardware_memory = get_space_hardware_memory() * 1024 # Convert GB to MB
required_memory = estimate_model_memory_requirements()
print(f"Space hardware memory: {hardware_memory}MB, Required: {required_memory:.2f}MB")
return hardware_memory >= required_memory
else:
# For local development, check available memory
available_memory = check_available_memory()
required_memory = estimate_model_memory_requirements()
print(f"Available memory: {available_memory:.2f}MB, Required: {required_memory:.2f}MB")
return available_memory >= required_memory
def get_repository_url():
"""Get the URL for the repository"""
if is_running_in_space():
space_id = os.environ.get("SPACE_ID", "")
if space_id:
# Space ID is in the format "username/spacename"
return f"https://huggingface.co/spaces/{space_id}"
else:
return "https://huggingface.co/spaces/xingqiang/radar-analysis"
else:
return "https://huggingface.co/spaces/xingqiang/radar-analysis"
def get_directory_name_from_repo_url(repo_url):
"""Get the directory name from the repository URL"""
# Extract the last part of the URL
parts = repo_url.rstrip('/').split('/')
return parts[-1]
# Launch the interface
def launch():
"""启动Gradio界面"""
if is_running_in_space():
# 在Spaces中,使用最小资源配置以避免内存问题
logger.info("使用最小资源配置启动Spaces")
iface.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
max_threads=4, # 从10减少到4
show_error=True,
quiet=False
)
else:
# 对于本地开发,使用默认设置
iface.launch()
# Create Gradio interface
with gr.Blocks(theme=THEME) as iface:
theme_state = gr.State(THEME)
with gr.Row():
gr.Markdown("# 雷达图像分析系统")
dark_mode_btn = gr.Button("🌓 切换暗黑模式", scale=0)
# 添加模型加载提示
gr.Markdown("""
### ℹ️ 模型加载说明
- 模型仅在您点击"分析"按钮时才会下载和初始化
- 首次分析可能需要较长时间,因为需要下载模型
- 如果内存不足,系统会自动切换到演示模式
""", elem_id="model-loading-notice")
if USE_DEMO_MODE:
hardware_type = get_space_hardware_type() if is_running_in_space() else "N/A"
hardware_tier = get_space_hardware_tier() if is_running_in_space() else "N/A"
hardware_memory = get_space_hardware_memory() if is_running_in_space() else 0
total_memory = get_total_system_memory()
required_memory = estimate_model_memory_requirements()
recommended_tier = get_recommended_space_tier()
upgrade_url = get_space_upgrade_url()
model_card_url = get_model_card_url()
memory_info = f"Space硬件: {hardware_type} (等级: {hardware_tier}, 内存: {hardware_memory}GB)"
model_req = f"[PaliGemma模型]({model_card_url})在使用8位量化加载时需要约{required_memory/1024:.1f}GB内存"
gr.Markdown(f"""
### ⚠️ 运行在演示模式
由于内存限制,应用程序当前在演示模式下运行:
1. **内存错误**: Space遇到"内存限制超过(16Gi)"错误
- {memory_info}
- 系统总内存: {total_memory:.2f}MB
- {model_req}
2. **解决方案**:
- 演示模式提供模拟结果用于演示目的
- 要使用完整模型,请在本地运行此应用程序,需要{required_memory/1024:.1f}GB+内存
- 或[升级到{recommended_tier} Space等级]({upgrade_url})或更高
演示模式仍提供所有UI功能和可视化特性。
""", elem_id="demo-mode-warning")
gr.Markdown("上传雷达图像以分析缺陷并生成技术报告")
with gr.Tabs() as tabs:
with gr.TabItem("分析", id="analysis"):
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("输入", open=True):
input_image = gr.Image(
type="pil",
label="上传雷达图像",
elem_id="input-image",
sources=["upload", "webcam", "clipboard"],
tool="editor"
)
tech_report_checkbox = gr.Checkbox(
label="生成技术报告",
value=False,
info="创建详细的技术分析报告"
)
analyze_button = gr.Button(
"分析",
variant="primary",
elem_id="analyze-btn"
)
with gr.Column(scale=2):
with gr.Accordion("检测结果", open=True):
output_image = gr.Image(
type="pil",
label="检测结果",
elem_id="output-image"
)
with gr.Accordion("分析报告", open=True):
output_report = gr.HTML(
label="分析报告",
elem_id="analysis-report"
)
tech_report_output = gr.File(
label="技术报告",
elem_id="tech-report"
)
with gr.Row():
with gr.Column():
confidence_plot = gr.Plot(
label="置信度分数",
elem_id="confidence-plot"
)
with gr.Column():
feature_plot = gr.Plot(
label="特征分析",
elem_id="feature-plot"
)
with gr.Row():
heatmap_plot = gr.Plot(
label="信号强度热图",
elem_id="heatmap-plot"
)
with gr.TabItem("历史", id="history"):
with gr.Row():
history_button = gr.Button("刷新历史")
history_output = gr.HTML(elem_id="history-output")
with gr.TabItem("帮助", id="help"):
gr.Markdown("""
## 如何使用此工具
1. **上传图像**: 点击上传按钮选择要分析的雷达图像
2. **生成技术报告** (可选): 如果需要详细的技术报告,请勾选此框
3. **分析**: 点击分析按钮处理图像
4. **查看结果**:
- 检测可视化显示已识别的缺陷
- 分析报告提供发现的摘要
- 技术报告(如果请求)提供详细指标
- 图表提供置信度分数和特征分析的可视化表示
## 关于模型
该系统使用[PaliGemma]({get_model_card_url()}),这是一个视觉-语言模型,结合了SigLIP-So400m(图像编码器)和Gemma-2B(文本解码器)进行联合目标检测和多模态分析。
该模型针对雷达图像分析进行了微调,可以检测结构检查图像中的各种类型的缺陷和异常。
""")
if USE_DEMO_MODE and is_running_in_space():
gr.Markdown(get_local_installation_instructions())
gr.Markdown("""
## 键盘快捷键
- **Ctrl+A**: 触发分析
- **Ctrl+D**: 切换暗黑模式
## 故障排除
- 如果分析失败,请尝试上传不同的图像格式
- 确保图像是有效的雷达扫描
- 对于技术问题,请查看控制台日志
""")
# Set up event handlers
dark_mode_btn.click(
fn=toggle_dark_mode,
inputs=[],
outputs=[iface],
api_name="toggle_theme"
)
analyze_button.click(
fn=process_image_streaming,
inputs=[input_image, tech_report_checkbox],
outputs=[output_image, output_report, tech_report_output, confidence_plot, feature_plot, heatmap_plot],
api_name="analyze"
)
history_button.click(
fn=display_history,
inputs=[],
outputs=[history_output],
api_name="history"
)
# Add keyboard shortcuts
iface.load(lambda: None, None, None, _js="""
() => {
document.addEventListener('keydown', (e) => {
if (e.key === 'a' && e.ctrlKey) {
document.getElementById('analyze-btn').click();
}
if (e.key === 'd' && e.ctrlKey) {
document.querySelector('button:contains("切换暗黑模式")').click();
}
});
}
""")
# Launch the interface
launch()
|