Spaces:
Running
Running
File size: 3,249 Bytes
7aef3af a54a273 7aef3af c456e88 7aef3af 48c1344 f20b422 48c1344 e53817f 48c1344 7aef3af e53817f 7aef3af e53817f 0ebcb8d e53817f 7aef3af e53817f c85b146 e53817f c85b146 48c1344 0ebcb8d 7aef3af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
from huggingface_hub import snapshot_download
import gradio as gr
import numpy as np
import torch
import sys
import os
from tinysam import sam_model_registry, SamPredictor
snapshot_download("merve/tinysam", local_dir="tinysam")
model_type = "vit_t"
sam = sam_model_registry[model_type](checkpoint="./tinysam/tinysam.pth")
predictor = SamPredictor(sam)
examples = [
[os.path.join(os.path.dirname(__file__), "assets/1.jpg")],
["assets/2.jpg"],
["assets/3.jpg"],
["assets/4.jpeg"],
["assets/5.jpg"],
["assets/6.jpeg"]
]
default_example = examples[0]
# Description
title = "<center><strong><font size='8'>TinySAM<font></strong> <a href='https://github.com/xinghaochen/TinySAM'><font size='6'>[GitHub]</font></a> </center>"
description_p = """# Interactive Instance Segmentation
- Point-prompt instruction
<ol>
<li> Click on the left image (point input), visualizing the point on the right image </li>
<li> Click the button of Segment with Point Prompt </li>
</ol>
- Box-prompt instruction
<ol>
<li> Click on the left image (one point input), visualizing the point on the right image </li>
<li> Click on the left image (another point input), visualizing the point and the box on the right image</li>
<li> Click the button of Segment with Box Prompt </li>
</ol>
- Github [link](https://github.com/xinghaochen/TinySAM)
"""
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def infer(img):
if img is None:
gr.Error("Please upload an image and select a point.")
if img["background"] is None:
gr.Error("Please upload an image and select a point.")
# background (original image) layers[0] ( point prompt) composite (total image)
image = img["background"].convert("RGB")
point_prompt = img["layers"][0]
total_image = img["composite"]
predictor.set_image(np.array(image))
print("point_prompt : ", point_prompt)
# get point prompt
img_arr = np.array(point_prompt)
if not np.any(img_arr):
gr.Error("Please select a point on top of the image.")
else:
nonzero_indices = np.nonzero(img_arr)
img_arr = np.array(point_prompt)
nonzero_indices = np.nonzero(img_arr)
center_x = int(np.mean(nonzero_indices[1]))
center_y = int(np.mean(nonzero_indices[0]))
input_point = np.array([[center_x, center_y]])
input_label = np.array([1])
masks, scores, logits = predictor.predict(
point_coords=input_point,
point_labels=input_label,
)
result_label = [(masks[scores.argmax(), :, :], "mask")]
return image, result_label
with gr.Blocks(css=css, title="TinySAM") as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Row():
with gr.Column():
im = gr.ImageEditor(
type="pil",
)
output = gr.AnnotatedImage()
im.change(infer, inputs=im, outputs=output)
demo.launch(debug=True) |