File size: 13,556 Bytes
2fd6166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import inspect
import random
from typing import Optional

import torch
import torch.nn.functional as F
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_pndm import PNDMScheduler
from pytorch3d.implicitron.dataset.data_loader_map_provider import FrameData
from pytorch3d.renderer.cameras import CamerasBase
from pytorch3d.structures import Pointclouds
from torch import Tensor
from tqdm import tqdm

from .model_utils import get_num_points, get_custom_betas
from .point_cloud_model import PointCloudModel
from .projection_model import PointCloudProjectionModel


class ConditionalPointCloudDiffusionModel(PointCloudProjectionModel):
    
    def __init__(
        self,
        beta_start: float,
        beta_end: float,
        beta_schedule: str,
        point_cloud_model: str,
        point_cloud_model_embed_dim: int,
        **kwargs,  # projection arguments
    ):
        super().__init__(**kwargs)
        
        # Checks
        if not self.predict_shape:
            raise NotImplementedError('Must predict shape if performing diffusion.')

        # Create diffusion model schedulers which define the sampling timesteps
        self.dm_pred_type = kwargs.get('dm_pred_type', "epsilon")
        assert self.dm_pred_type in ['epsilon','sample']
        scheduler_kwargs = {"prediction_type": self.dm_pred_type}
        if beta_schedule == 'custom':
            scheduler_kwargs.update(dict(trained_betas=get_custom_betas(beta_start=beta_start, beta_end=beta_end)))
        else:
            scheduler_kwargs.update(dict(beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule))
        self.schedulers_map = {
            'ddpm': DDPMScheduler(**scheduler_kwargs, clip_sample=False),
            'ddim': DDIMScheduler(**scheduler_kwargs, clip_sample=False), 
            'pndm': PNDMScheduler(**scheduler_kwargs), 
        }
        self.scheduler = self.schedulers_map['ddpm']  # this can be changed for inference

        # Create point cloud model for processing point cloud at each diffusion step
        self.init_pcloud_model(kwargs, point_cloud_model, point_cloud_model_embed_dim)

        self.load_sample_init = kwargs.get('load_sample_init', False)
        self.sample_init_scale = kwargs.get('sample_init_scale', 1.0)
        self.test_init_with_gtpc = kwargs.get('test_init_with_gtpc', False)

        self.consistent_center = kwargs.get('consistent_center', False)
        self.cam_noise_std = kwargs.get('cam_noise_std', 0.0) # add noise to camera based on timestamps

    def init_pcloud_model(self, kwargs, point_cloud_model, point_cloud_model_embed_dim):
        self.point_cloud_model = PointCloudModel(
            model_type=point_cloud_model,
            embed_dim=point_cloud_model_embed_dim,
            in_channels=self.in_channels,
            out_channels=self.out_channels,  # voxel resolution multiplier is 1.
            voxel_resolution_multiplier=kwargs.get('voxel_resolution_multiplier', 1)
        )

    def forward_train(
        self, 
        pc: Pointclouds,
        camera: Optional[CamerasBase],
        image_rgb: Optional[Tensor],
        mask: Optional[Tensor],
        return_intermediate_steps: bool = False,
        **kwargs
    ):

        # Normalize colors and convert to tensor
        x_0 = self.point_cloud_to_tensor(pc, normalize=True, scale=True) # this will not pack the point colors
        B, N, D = x_0.shape

        # Sample random noise
        noise = torch.randn_like(x_0)
        if self.consistent_center:
            # modification suggested by https://arxiv.org/pdf/2308.07837.pdf
            noise = noise - torch.mean(noise, dim=1, keepdim=True)

        # Sample random timesteps for each point_cloud
        timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,), 
            device=self.device, dtype=torch.long)

        # Add noise to points
        x_t = self.scheduler.add_noise(x_0, noise, timestep) # diffusion noisy adding, only add to the coordinate, not features

        # add noise to the camera pose, based on timestamps
        if self.cam_noise_std > 0.000001:
            # the noise is very different
            camera = camera.clone()
            camT = camera.T # (B, 3)
            dist = torch.sqrt(torch.sum(camT**2, -1, keepdim=True))
            nratio = timestep[:, None] / self.scheduler.num_train_timesteps # time-dependent noise
            tnoise = torch.randn(B, 3).to(dist.device)/3. * dist * self.cam_noise_std * nratio
            camera.T = camera.T + tnoise

        # Conditioning, the pixel-aligned feature is based on points with noise (new points)
        x_t_input = self.get_diffu_input(camera, image_rgb, mask, timestep, x_t, **kwargs)

        # Forward
        loss, noise_pred = self.compute_loss(noise, timestep, x_0, x_t_input)

        # Whether to return intermediate steps
        if return_intermediate_steps:
            return loss, (x_0, x_t, noise, noise_pred)

        return loss

    def compute_loss(self, noise, timestep, x_0, x_t_input):
        x_pred = torch.zeros_like(x_0)
        if self.self_conditioning:
            # self conditioning, from https://openreview.net/pdf?id=3itjR9QxFw
            if random.uniform(0, 1.) > 0.5:
                with torch.no_grad():
                    x_pred = self.point_cloud_model(torch.cat([x_t_input, x_pred], -1), timestep)
            noise_pred = self.point_cloud_model(torch.cat([x_t_input, x_pred], -1), timestep)
        else:
            noise_pred = self.point_cloud_model(x_t_input, timestep)
        # Check
        if not noise_pred.shape == noise.shape:
            raise ValueError(f'{noise_pred.shape=} and {noise.shape=}')
        # Loss
        if self.dm_pred_type == 'epsilon':
            loss = F.mse_loss(noise_pred, noise)
        elif self.dm_pred_type == 'sample':
            loss = F.mse_loss(noise_pred, x_0)  # predicting sample
        else:
            raise NotImplementedError
        return loss, noise_pred

    def get_diffu_input(self, camera, image_rgb, mask, timestep, x_t, **kwargs):
        "return: (B, N, D), the exact input to the diffusion model, x_t: (B, N, 3)"
        x_t_input = self.get_input_with_conditioning(x_t, camera=camera,
                                                     image_rgb=image_rgb, mask=mask, t=timestep)
        return x_t_input

    @torch.no_grad()
    def forward_sample(
        self,
        num_points: int,
        camera: Optional[CamerasBase],
        image_rgb: Optional[Tensor],
        mask: Optional[Tensor],
        # Optional overrides
        scheduler: Optional[str] = 'ddpm',
        # Inference parameters
        num_inference_steps: Optional[int] = 1000,
        eta: Optional[float] = 0.0,  # for DDIM
        # Whether to return all the intermediate steps in generation
        return_sample_every_n_steps: int = -1,
        # Whether to disable tqdm
        disable_tqdm: bool = False,
        gt_pc: Pointclouds = None,
            **kwargs
    ):

        # Get scheduler from mapping, or use self.scheduler if None
        scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler]

        # Get the size of the noise
        N = num_points
        B = 1 if image_rgb is None else image_rgb.shape[0]
        D = self.get_x_T_channel()
        device = self.device if image_rgb is None else image_rgb.device

        sample_from_interm = kwargs.get('sample_from_interm', False)
        interm_steps = kwargs.get('noise_step') if sample_from_interm else -1
        x_t = self.initialize_x_T(device, gt_pc, (B, N, D), interm_steps, scheduler)
        x_pred = torch.zeros_like(x_t)

        # Set timesteps
        extra_step_kwargs = self.setup_reverse_process(eta, num_inference_steps, scheduler)

        # Loop over timesteps
        all_outputs = []
        return_all_outputs = (return_sample_every_n_steps > 0)
        progress_bar = tqdm(scheduler.timesteps.to(device), desc=f'Sampling ({x_t.shape})', disable=disable_tqdm)

        for i, t in enumerate(progress_bar):
            add_interm_output = (return_all_outputs and (
                        i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1))
            # Conditioning
            x_t_input = self.get_diffu_input(camera, image_rgb, mask, t, x_t, **kwargs)
            if self.self_conditioning:
                x_t_input = torch.cat([x_t_input, x_pred], -1) # add self-conditioning
            inference_binary = (i == len(progress_bar) - 1) | add_interm_output
            # One reverse step with conditioning
            x_t = self.reverse_step(extra_step_kwargs, scheduler, t, x_t, x_t_input,
                                    inference_binary=inference_binary) # (B, N, D), D=3 or 4
            x_pred = x_t # for next iteration self conditioning

            # Append to output list if desired
            if add_interm_output:
                all_outputs.append(x_t)

        # Convert output back into a point cloud, undoing normalization and scaling
        output = self.tensor_to_point_cloud(x_t, denormalize=True, unscale=True) # this convert the points back to original scale
        if return_all_outputs:
            all_outputs = torch.stack(all_outputs, dim=1)  # (B, sample_steps, N, D)
            all_outputs = [self.tensor_to_point_cloud(o, denormalize=True, unscale=True) for o in all_outputs]

        return (output, all_outputs) if return_all_outputs else output

    def get_x_T_channel(self):
        D = 3 + (self.color_channels if self.predict_color else 0)
        return D

    def initialize_x_T(self, device, gt_pc, shape, interm_steps:int=-1, scheduler=None):
        B, N, D = shape
        # Sample noise initialization
        if interm_steps > 0:
            # Sample from some intermediate steps
            x_0 = self.point_cloud_to_tensor(gt_pc, normalize=True, scale=True)
            noise = torch.randn(B, N, D, device=device)

            # always make sure the noise does not change the pc center, this is important to reduce 0.1cm CD!
            noise = noise - torch.mean(noise, dim=1, keepdim=True)

            x_t = scheduler.add_noise(x_0, noise, torch.tensor([interm_steps - 1] * B).long().to(device))  # Add noise
        else:
            # Sample from random Gaussian 
            x_t = torch.randn(B, N, D, device=device)

        x_t = x_t * self.sample_init_scale  # for test
        if self.consistent_center:
            x_t = x_t - torch.mean(x_t, dim=1, keepdim=True)
        return x_t

    def reverse_step(self, extra_step_kwargs, scheduler, t, x_t, x_t_input, **kwargs):
        """
        run one reverse step to compute x_t
        :param extra_step_kwargs: 
        :param scheduler: 
        :param t: [1], diffusion time step
        :param x_t: (B, N, 3)
        :param x_t_input: conditional features (B, N, F)
        :param kwargs: other configurations to run diffusion step
        :return: denoised x_t
        """
        B = x_t.shape[0]
        # Forward
        noise_pred = self.point_cloud_model(x_t_input, t.reshape(1).expand(B))
        if self.consistent_center:
            assert self.dm_pred_type != 'sample', 'incompatible dm predition type for CCD!'
            # suggested by the CCD-3DR paper
            noise_pred = noise_pred - torch.mean(noise_pred, dim=1, keepdim=True)
        # Step
        x_t = scheduler.step(noise_pred, t, x_t, **extra_step_kwargs).prev_sample
        if self.consistent_center:
            x_t = x_t - torch.mean(x_t, dim=1, keepdim=True)
        return x_t

    def setup_reverse_process(self, eta, num_inference_steps, scheduler):
        """
        setup diffusion chain, and others.
        """
        accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        extra_set_kwargs = {"offset": 1} if accepts_offset else {}
        scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
        # Prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
        extra_step_kwargs = {"eta": eta} if accepts_eta else {}
        return extra_step_kwargs

    def forward(self, batch: FrameData, mode: str = 'train', **kwargs):
        """
        A wrapper around the forward method for training and inference
        """
        if isinstance(batch, dict):  # fixes a bug with multiprocessing where batch becomes a dict
            batch = FrameData(**batch)  # it really makes no sense, I do not understand it

        if mode == 'train':
            return self.forward_train(
                pc=batch.sequence_point_cloud, 
                camera=batch.camera,
                image_rgb=batch.image_rgb,
                mask=batch.fg_probability,
                **kwargs) 
        elif mode == 'sample':
            num_points = kwargs.pop('num_points', get_num_points(batch.sequence_point_cloud))
            return self.forward_sample(
                num_points=num_points,
                camera=batch.camera,
                image_rgb=batch.image_rgb,
                mask=batch.fg_probability,
                **kwargs)
        else:
            raise NotImplementedError()