File size: 9,766 Bytes
2fd6166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import numpy as np
import cv2
import torch

from .base_data import BaseDataset
from .behave_paths import DataPaths
from .img_utils import compute_translation, masks2bbox, crop


def padTo_4x3(rgb, person_mask, obj_mask, aspect_ratio=0.75):
    """
    pad images to have 4:3 aspect ratio
    :param rgb: (H, W, 3)
    :param person_mask:
    :param obj_mask:
    :return: all images at the given aspect ratio
    """
    h, w = rgb.shape[:2]
    if w > h * 1/aspect_ratio:
        # pad top
        h_4x3 = int(w * aspect_ratio)
        pad_top = h_4x3 - h
        rgb_pad = np.pad(rgb, ((pad_top, 0), (0, 0), (0, 0)))
        person_mask = np.pad(person_mask, ((pad_top, 0), (0, 0))) if person_mask is not None else None
        obj_mask = np.pad(obj_mask, ((pad_top, 0), (0, 0))) if obj_mask is not None else None
    else:
        # pad two side
        w_new = np.lcm.reduce([h * 2, 16]) # least common multiplier
        h_4x3 = int(w_new * aspect_ratio)
        pad_top = h_4x3 - h
        pad_left = (w_new - w) // 2
        pad_right = w_new - w - pad_left
        rgb_pad = np.pad(rgb, ((pad_top, 0), (pad_left, pad_right), (0, 0)))
        obj_mask = np.pad(obj_mask, ((pad_top, 0), (pad_left, pad_right))) if obj_mask is not None else None
        person_mask = np.pad(person_mask, ((pad_top, 0), (pad_left, pad_right))) if person_mask is not None else None
    return rgb_pad, obj_mask, person_mask


def recrop_input(rgb, person_mask, obj_mask, dataset_name='behave'):
    "recrop input images"
    exp_ratio = 1.42
    if dataset_name == 'behave':
        mean_center = np.array([1008, 995])  # mean RGB image crop center
        behave_size = (2048, 1536)
        new_size = (int(750 * exp_ratio), int(exp_ratio * 750))
    else:
        mean_center = np.array([904, 668])  # mean RGB image crop center for bottle sequences of ICAP
        behave_size = (1920, 1080)
        new_size = (int(593.925 * exp_ratio), int(exp_ratio * 593.925))  # mean width of bottle sequences
    aspect_ratio = behave_size[1] / behave_size[0]
    pad_top = mean_center[1] - new_size[0] // 2
    pad_bottom = behave_size[1] - (mean_center[1] + new_size[0] // 2)
    pad_left = mean_center[0] - new_size[0] // 2
    pad_right = behave_size[0] - (mean_center[0] + new_size[0] // 2)

    # First resize to the same aspect ratio
    if rgb.shape[0] / rgb.shape[1] != aspect_ratio:
        rgb, obj_mask, person_mask = padTo_4x3(rgb, person_mask, obj_mask, aspect_ratio)

    # Resize to the same size as behave image, to have a comparable pixel size
    rgb = cv2.resize(rgb, behave_size)
    mask_ps = cv2.resize(person_mask, behave_size)
    mask_obj = cv2.resize(obj_mask, behave_size)

    # Crop and resize the human + object patch
    bmin, bmax = masks2bbox([mask_ps, mask_obj])
    center = (bmin + bmax) // 2
    crop_size = int(np.max(bmax - bmin) * exp_ratio)  # larger crop to have background
    img_crop = cv2.resize(crop(rgb, center, crop_size), new_size)
    mask_ps = cv2.resize(crop(mask_ps, center, crop_size), new_size)
    mask_obj = cv2.resize(crop(mask_obj, center, crop_size), new_size)

    # Pad back to have same shape as behave image
    img_full = np.pad(img_crop, [[pad_top, pad_bottom], [pad_left, pad_right], [0, 0]])
    mask_ps_full = np.pad(mask_ps, [[pad_top, pad_bottom], [pad_left, pad_right]])
    mask_obj_full = np.pad(mask_obj, [[pad_top, pad_bottom], [pad_left, pad_right]])

    # Make sure the image shape is the same
    if img_full.shape[:2] != behave_size[::-1]:
        img_full = cv2.resize(img_full, behave_size)
        mask_ps_full = cv2.resize(mask_ps_full, behave_size)
        mask_obj_full = cv2.resize(mask_obj_full, behave_size)
    return img_full, mask_ps_full, mask_obj_full


class DemoDataset(BaseDataset):
    def __init__(self, data_paths, input_size=(224, 224),
                 std_coverage=3.5, # used to estimate camera translation
                 ):
        super().__init__(data_paths, input_size)
        self.std_coverage = std_coverage

    def __len__(self):
        return len(self.data_paths)

    def __getitem__(self, idx):
        rgb_file = self.data_paths[idx]
        mask_hum, mask_obj = self.load_masks(rgb_file)
        rgb_full = cv2.imread(rgb_file)[:, :, ::-1]

        return self.image2dict(mask_hum, mask_obj, rgb_full, rgb_file)

    def image2dict(self, mask_hum, mask_obj, rgb_full, rgb_file=None):
        "do all the necessary preprocessing for images"
        if rgb_full.shape[:2] != mask_obj.shape[:2]:
            raise ValueError(f"The given object mask shape {mask_obj.shape[:2]} does not match the RGB image shape {rgb_full.shape[:2]}")
        if rgb_full.shape[:2] != mask_hum.shape[:2]:
            raise ValueError(f"The given human mask shape {mask_hum.shape[:2]} does not match the RGB image shape {rgb_full.shape[:2]}")

        if rgb_full.shape[:2] not in [(1080, 1920), (1536, 2048)]:
            # crop and resize the image to behave image size
            print(f"Recropping the input image and masks for {rgb_file}")
            rgb_full, mask_hum, mask_obj = recrop_input(rgb_full, mask_hum, mask_obj)
        color_h, color_w = rgb_full.shape[:2]
        # Input to the first stage model: human + object crop
        Kroi, objmask_fullcrop, psmask_fullcrop, rgb_fullcrop = self.crop_full_image(mask_hum.copy(),
                                                                                     mask_obj.copy(),
                                                                                     rgb_full.copy(),
                                                                                     [mask_hum, mask_obj],
                                                                                     1.00)
        # Input to the second stage model: human and object crops
        Kroi_h, masko_hum, maskh_hum, rgb_hum = self.crop_full_image(mask_hum.copy(),
                                                                     mask_obj.copy(),
                                                                     rgb_full.copy(),
                                                                     [mask_hum, mask_hum], 1.05)
        Kroi_o, masko_obj, maskh_obj, rgb_obj = self.crop_full_image(mask_hum.copy(),
                                                                     mask_obj.copy(),
                                                                     rgb_full.copy(),
                                                                     [mask_obj, mask_obj], 1.5)
        # Estimate camera translation
        cent_transform = np.eye(4)  # the transform applied to the mesh that moves it back to kinect camera frame
        bmin_ho, bmax_ho = masks2bbox([mask_hum, mask_obj])
        crop_size_ho = int(np.max(bmax_ho - bmin_ho) * 1.0)
        if crop_size_ho % 2 == 1:
            crop_size_ho += 1  # make sure it is an even number
        is_behave = self.is_behave_dataset(rgb_full.shape[1])
        if rgb_full.shape[1] not in [2048, 1920]:
            raise ValueError('the image is not normalized to BEHAVE or ICAP size!')
        indices = np.indices(rgb_full.shape[:2])
        if np.sum(mask_obj > 127) < 5:
            raise ValueError(f'not enough object mask found for {rgb_file}')
        pts_h = np.stack([indices[1][mask_hum > 127], indices[0][mask_hum > 127]], -1)
        pts_o = np.stack([indices[1][mask_obj > 127], indices[0][mask_obj > 127]], -1)
        proj_cent_est = (np.mean(pts_h, 0) + np.mean(pts_o, 0)) / 2.  # heuristic to obtain 2d projection center
        transl_estimate = compute_translation(proj_cent_est, crop_size_ho, is_behave, self.std_coverage)
        cent_transform[:3, 3] = transl_estimate / 7.0
        radius = 0.5  # don't do normalization anymore
        cent = transl_estimate / 7.0
        comb = np.matmul(self.opencv2py3d, cent_transform)
        R = torch.from_numpy(comb[:3, :3]).float()
        T = torch.from_numpy(comb[:3, 3]).float() / (radius * 2)
        data_dict = {
            "R": R,
            "T": T,
            "K": torch.from_numpy(Kroi).float(),
            "T_ho": torch.from_numpy(cent).float(),  # translation for H+O
            "image_path": rgb_file,
            "image_size_hw": torch.tensor(self.input_size),
            "images": torch.from_numpy(rgb_fullcrop).float().permute(2, 0, 1),
            "masks": torch.from_numpy(np.stack([psmask_fullcrop, objmask_fullcrop], 0)).float(),
            'orig_image_size': torch.tensor([color_h, color_w]),

            # Human input to stage 2
            "images_hum": torch.from_numpy(rgb_hum).float().permute(2, 0, 1),
            "masks_hum": torch.from_numpy(np.stack([maskh_hum, masko_hum], 0)).float(),
            "K_hum": torch.from_numpy(Kroi_h).float(),

            # Object input to stage 2
            "images_obj": torch.from_numpy(rgb_obj).float().permute(2, 0, 1),
            "masks_obj": torch.from_numpy(np.stack([maskh_obj, masko_obj], 0)).float(),
            "K_obj": torch.from_numpy(Kroi_o).float(),

            # some normalization parameters
            "gt_trans": cent,
            'radius': radius,
            "estimated_trans": transl_estimate,
        }
        return data_dict

    def image2batch(self, rgb, mask_hum, mask_obj):
        """
        given input image, convert it into a batch object ready for model inference
        :param rgb: (h, w, 3), np array
        :param mask_hum: (h, w, 3), np array
        :param mask_obj: (h, w, 3), np array
        :return:
        """
        mask_hum = np.mean(mask_hum, -1)
        mask_obj = np.mean(mask_obj, -1)

        data_dict = self.image2dict(mask_hum, mask_obj, rgb, 'input image')
        # convert dict to list
        new_dict = {k:[v] for k, v in data_dict.items()}

        return new_dict