Spaces:
Sleeping
Sleeping
File size: 20,921 Bytes
2fd6166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
"""
model that use cross attention to predict human + object
"""
import inspect
import random
from typing import Optional
from torch import Tensor
import torch
import numpy as np
from pytorch3d.structures import Pointclouds
from pytorch3d.renderer import CamerasBase
from .model_diff_data import ConditionalPCDiffusionBehave
from .pvcnn.pvcnn_ho import PVCNN2HumObj
import torch.nn.functional as F
from pytorch3d.renderer import PerspectiveCameras
from .model_utils import get_num_points
from tqdm import tqdm
class CrossAttenHODiffusionModel(ConditionalPCDiffusionBehave):
def init_pcloud_model(self, kwargs, point_cloud_model, point_cloud_model_embed_dim):
"""use cross attention model"""
if point_cloud_model == 'pvcnn':
self.point_cloud_model = PVCNN2HumObj(embed_dim=point_cloud_model_embed_dim,
num_classes=self.out_channels,
extra_feature_channels=(self.in_channels - 3),
voxel_resolution_multiplier=kwargs.get('voxel_resolution_multiplier', 1),
attn_type=kwargs.get('attn_type', 'simple-cross'),
attn_weight=kwargs.get("attn_weight", 1.0)
)
else:
raise ValueError(f"Unknown point cloud model {point_cloud_model}!")
self.point_visible_test = kwargs.get("point_visible_test", 'single') # when doing point visibility test, use only human points or human + object?
assert self.point_visible_test in ['single', 'combine'], f'invalide point visible test option {self.point_visible_test}'
# print(f"Point visibility test is based on {self.point_visible_test} point clouds!")
def forward_train(
self,
pc: Pointclouds,
camera: Optional[CamerasBase],
image_rgb: Optional[Tensor],
mask: Optional[Tensor],
return_intermediate_steps: bool = False,
**kwargs
):
"additional input (RGB, mask, camera, and pc) for object is read from kwargs"
# assert not self.consistent_center
assert not self.self_conditioning
# Normalize colors and convert to tensor
x0_h = self.point_cloud_to_tensor(pc, normalize=True, scale=True) # this will not pack the point colors
x0_o = self.point_cloud_to_tensor(kwargs.get('pc_obj'), normalize=True, scale=True)
B, N, D = x0_h.shape
# Sample random noise
noise = torch.randn_like(x0_h)
if self.consistent_center:
# modification suggested by https://arxiv.org/pdf/2308.07837.pdf
noise = noise - torch.mean(noise, dim=1, keepdim=True)
# Sample random timesteps for each point_cloud
timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,),
device=self.device, dtype=torch.long)
# timestep = torch.randint(0, 1, (B,),
# device=self.device, dtype=torch.long)
# Add noise to points
xt_h = self.scheduler.add_noise(x0_h, noise, timestep)
xt_o = self.scheduler.add_noise(x0_o, noise, timestep)
norm_parms = self.pack_norm_params(kwargs) # (2, B, 4)
# get input conditioning
x_t_input_h, x_t_input_o = self.get_image_conditioning(camera, image_rgb, kwargs, mask, norm_parms, timestep,
xt_h, xt_o)
# Diffusion prediction
noise_pred_h, noise_pred_o = self.point_cloud_model(x_t_input_h, x_t_input_o, timestep, norm_parms)
# Check
if not noise_pred_h.shape == noise.shape:
raise ValueError(f'{noise_pred_h.shape=} and {noise.shape=}')
if not noise_pred_o.shape == noise.shape:
raise ValueError(f'{noise_pred_o.shape=} and {noise.shape=}')
# Loss
loss_h = F.mse_loss(noise_pred_h, noise)
loss_o = F.mse_loss(noise_pred_o, noise)
loss = loss_h + loss_o
# Whether to return intermediate steps
if return_intermediate_steps:
return loss, (x0_h, xt_h, noise, noise_pred_h)
return loss, torch.tensor([loss_h, loss_o])
def get_image_conditioning(self, camera, image_rgb, kwargs, mask, norm_parms, timestep, xt_h, xt_o):
"""
compute image features for each point
:param camera:
:param image_rgb:
:param kwargs:
:param mask:
:param norm_parms:
:param timestep:
:param xt_h:
:param xt_o:
:return:
"""
if self.point_visible_test == 'single':
# Visibility test is down independently for human and object
x_t_input_h = self.get_input_with_conditioning(xt_h, camera=camera,
image_rgb=image_rgb, mask=mask, t=timestep)
x_t_input_o = self.get_input_with_conditioning(xt_o, camera=kwargs.get('camera_obj'),
image_rgb=kwargs.get('rgb_obj'),
mask=kwargs.get('mask_obj'), t=timestep)
elif self.point_visible_test == 'combine':
# Combine human + object points to do visibility test and obtain features
B, N = xt_h.shape[:2] # (B, N, 3)
# for human: transform object points first to H+O space, then to human space
xt_o_in_ho = xt_o * 2 * norm_parms[1, :, 3:].unsqueeze(1) + norm_parms[1, :, :3].unsqueeze(1)
xt_o_in_hum = (xt_o_in_ho - norm_parms[0, :, :3].unsqueeze(1)) / (2 * norm_parms[0, :, 3:].unsqueeze(1))
# compute features for all points, take only first half feature for human
x_t_input_h = self.get_input_with_conditioning(torch.cat([xt_h, xt_o_in_hum], 1), camera=camera,
image_rgb=image_rgb, mask=mask, t=timestep)[:,:N]
# for object: transform human points to H+O space, then to object space
xt_h_in_ho = xt_h * 2 * norm_parms[0, :, 3:].unsqueeze(1) + norm_parms[0, :, :3].unsqueeze(1)
xt_h_in_obj = (xt_h_in_ho - norm_parms[1, :, :3].unsqueeze(1)) / (2 * norm_parms[1, :, 3:].unsqueeze(1))
x_t_input_o = self.get_input_with_conditioning(torch.cat([xt_o, xt_h_in_obj], 1),
camera=kwargs.get('camera_obj'),
image_rgb=kwargs.get('rgb_obj'),
mask=kwargs.get('mask_obj'), t=timestep)[:, :N]
else:
raise NotImplementedError
return x_t_input_h, x_t_input_o
def forward(self, batch, mode: str = 'train', **kwargs):
""""""
images = torch.stack(batch['images'], 0).to('cuda')
masks = torch.stack(batch['masks'], 0).to('cuda')
pc = self.get_input_pc(batch)
camera = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(batch['T_hum']),
K=torch.stack(batch['K_hum']),
device='cuda',
in_ndc=True
)
grid_df = torch.stack(batch['grid_df'], 0).to('cuda') if 'grid_df' in batch else None
num_points = kwargs.pop('num_points', get_num_points(pc))
rgb_obj = torch.stack(batch['images_obj'], 0).to('cuda')
masks_obj = torch.stack(batch['masks_obj'], 0).to('cuda')
pc_obj = Pointclouds([x.to('cuda') for x in batch['pclouds_obj']])
camera_obj = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(batch['T_obj']),
K=torch.stack(batch['K_obj']),
device='cuda',
in_ndc=True
)
# normalization parameters
cent_hum = torch.stack(batch['cent_hum'], 0).to('cuda')
cent_obj = torch.stack(batch['cent_obj'], 0).to('cuda') # B, 3
radius_hum = torch.stack(batch['radius_hum'], 0).to('cuda') # B, 1
radius_obj = torch.stack(batch['radius_obj'], 0).to('cuda')
# print(batch['image_path'])
if mode == 'train':
return self.forward_train(
pc=pc,
camera=camera,
image_rgb=images,
mask=masks,
grid_df=grid_df,
rgb_obj=rgb_obj,
mask_obj=masks_obj,
pc_obj=pc_obj,
camera_obj=camera_obj,
cent_hum=cent_hum,
cent_obj=cent_obj,
radius_hum=radius_hum,
radius_obj=radius_obj,
)
elif mode == 'sample':
# this use GT centers to do projection
return self.forward_sample(
num_points=num_points,
camera=camera,
image_rgb=images,
mask=masks,
gt_pc=pc,
rgb_obj=rgb_obj,
mask_obj=masks_obj,
pc_obj=pc_obj,
camera_obj=camera_obj,
cent_hum=cent_hum,
cent_obj=cent_obj,
radius_hum=radius_hum,
radius_obj=radius_obj,
**kwargs)
elif mode == 'interm-gt':
return self.forward_sample(
num_points=num_points,
camera=camera,
image_rgb=images,
mask=masks,
gt_pc=pc,
rgb_obj=rgb_obj,
mask_obj=masks_obj,
pc_obj=pc_obj,
camera_obj=camera_obj,
cent_hum=cent_hum,
cent_obj=cent_obj,
radius_hum=radius_hum,
radius_obj=radius_obj,
sample_from_interm=True,
**kwargs)
elif mode == 'interm-pred':
# use camera from predicted
camera = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(batch['T_hum_scaled']),
K=torch.stack(batch['K_hum']),
device='cuda',
in_ndc=True
)
camera_obj = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(batch['T_obj_scaled']),
K=torch.stack(batch['K_obj']), # the camera should be human/object specific!!!
device='cuda',
in_ndc=True
)
# use pc from predicted
pc = Pointclouds([x.to('cuda') for x in batch['pred_hum']])
pc_obj = Pointclouds([x.to('cuda') for x in batch['pred_obj']])
# use center and radius from predicted
cent_hum = torch.stack(batch['cent_hum_pred'], 0).to('cuda')
cent_obj = torch.stack(batch['cent_obj_pred'], 0).to('cuda') # B, 3
radius_hum = torch.stack(batch['radius_hum_pred'], 0).to('cuda') # B, 1
radius_obj = torch.stack(batch['radius_obj_pred'], 0).to('cuda')
return self.forward_sample(
num_points=num_points,
camera=camera,
image_rgb=images,
mask=masks,
gt_pc=pc,
rgb_obj=rgb_obj,
mask_obj=masks_obj,
pc_obj=pc_obj,
camera_obj=camera_obj,
cent_hum=cent_hum,
cent_obj=cent_obj,
radius_hum=radius_hum,
radius_obj=radius_obj,
sample_from_interm=True,
**kwargs)
elif mode == 'interm-pred-ts':
# use only estimate translation and scale, but sample from gaussian
# this works, the camera is GT!!!
pc = Pointclouds([x.to('cuda') for x in batch['pred_hum']])
pc_obj = Pointclouds([x.to('cuda') for x in batch['pred_obj']])
# use center and radius from predicted
cent_hum = torch.stack(batch['cent_hum_pred'], 0).to('cuda')
cent_obj = torch.stack(batch['cent_obj_pred'], 0).to('cuda') # B, 3
radius_hum = torch.stack(batch['radius_hum_pred'], 0).to('cuda') # B, 1
radius_obj = torch.stack(batch['radius_obj_pred'], 0).to('cuda')
# print(cent_hum[0], radius_hum[0], cent_obj[0], radius_obj[0])
return self.forward_sample(
num_points=num_points,
camera=camera,
image_rgb=images,
mask=masks,
gt_pc=pc,
rgb_obj=rgb_obj,
mask_obj=masks_obj,
pc_obj=pc_obj,
camera_obj=camera_obj,
cent_hum=cent_hum,
cent_obj=cent_obj,
radius_hum=radius_hum,
radius_obj=radius_obj,
sample_from_interm=False,
**kwargs)
else:
raise NotImplementedError
def forward_sample(
self,
num_points: int,
camera: Optional[CamerasBase],
image_rgb: Optional[Tensor],
mask: Optional[Tensor],
# Optional overrides
scheduler: Optional[str] = 'ddpm',
# Inference parameters
num_inference_steps: Optional[int] = 1000,
eta: Optional[float] = 0.0, # for DDIM
# Whether to return all the intermediate steps in generation
return_sample_every_n_steps: int = -1,
# Whether to disable tqdm
disable_tqdm: bool = False,
gt_pc: Pointclouds = None,
**kwargs
):
"use two models to run diffusion forward, and also use translation and scale to put them back"
assert not self.self_conditioning
# Get scheduler from mapping, or use self.scheduler if None
scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler]
# Get the size of the noise
N = num_points
B = 1 if image_rgb is None else image_rgb.shape[0]
D = self.get_x_T_channel()
device = self.device if image_rgb is None else image_rgb.device
# sample from full steps or only a few steps
sample_from_interm = kwargs.get('sample_from_interm', False)
interm_steps = kwargs.get('noise_step') if sample_from_interm else -1
xt_h = self.initialize_x_T(device, gt_pc, (B, N, D), interm_steps, scheduler)
xt_o = self.initialize_x_T(device, kwargs.get('pc_obj', None), (B, N, D), interm_steps, scheduler)
# the segmentation mask
segm_mask = torch.zeros(B, 2*N, 1).to(device)
segm_mask[:, :N] = 1.0
# Set timesteps
extra_step_kwargs = self.setup_reverse_process(eta, num_inference_steps, scheduler)
# Loop over timesteps
all_outputs = []
return_all_outputs = (return_sample_every_n_steps > 0)
progress_bar = tqdm(self.get_reverse_timesteps(scheduler, interm_steps),
desc=f'Sampling ({xt_h.shape})', disable=disable_tqdm)
# print("Camera T:", camera.T[0], camera.R[0])
# print("Camera_obj T:", kwargs.get('camera_obj').T[0], kwargs.get('camera_obj').R[0])
norm_parms = self.pack_norm_params(kwargs)
for i, t in enumerate(progress_bar):
x_t_input_h, x_t_input_o = self.get_image_conditioning(camera, image_rgb,
kwargs, mask,
norm_parms,
t,
xt_h, xt_o)
# One reverse step with conditioning
xt_h, xt_o = self.reverse_step(extra_step_kwargs, scheduler, t, torch.stack([xt_h, xt_o], 0),
torch.stack([x_t_input_h, x_t_input_o], 0), **kwargs) # (B, N, D), D=3
if (return_all_outputs and (i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1)):
# print(xt_h.shape, kwargs.get('cent_hum').shape, kwargs.get('radius_hum').shape)
x_t = torch.cat([self.denormalize_pclouds(xt_h, kwargs.get('cent_hum'), kwargs.get('radius_hum')),
self.denormalize_pclouds(xt_o, kwargs.get('cent_obj'), kwargs.get('radius_obj'))], 1)
# print(x_t.shape, xt_o.shape)
all_outputs.append(torch.cat([x_t, segm_mask], -1))
# print("Updating intermediate...")
# Convert output back into a point cloud, undoing normalization and scaling
x_t = torch.cat([self.denormalize_pclouds(xt_h, kwargs.get('cent_hum'), kwargs.get('radius_hum')),
self.denormalize_pclouds(xt_o, kwargs.get('cent_obj'), kwargs.get('radius_obj'))], 1)
x_t = torch.cat([x_t, segm_mask], -1)
output = self.tensor_to_point_cloud(x_t, denormalize=False, unscale=False) # this convert the points back to original scale
if return_all_outputs:
all_outputs = torch.stack(all_outputs, dim=1) # (B, sample_steps, N, D)
all_outputs = [self.tensor_to_point_cloud(o, denormalize=False, unscale=False) for o in all_outputs]
return (output, all_outputs) if return_all_outputs else output
def get_reverse_timesteps(self, scheduler, interm_steps:int):
"""
:param scheduler:
:param interm_steps: start from some intermediate steps
:return:
"""
if interm_steps > 0:
timesteps = torch.from_numpy(np.arange(0, interm_steps)[::-1].copy()).to(self.device)
else:
timesteps = scheduler.timesteps.to(self.device)
return timesteps
def pack_norm_params(self, kwargs:dict, scale=True):
scale_factor = self.scale_factor if scale else 1.0
hum = torch.cat([kwargs.get('cent_hum')*scale_factor, kwargs.get('radius_hum')], -1)
obj = torch.cat([kwargs.get('cent_obj')*scale_factor, kwargs.get('radius_obj')], -1)
return torch.stack([hum, obj], 0) # (2, B, 4)
def reverse_step(self, extra_step_kwargs, scheduler, t, x_t, x_t_input, **kwargs):
"x_t: (2, B, D, N), x_t_input: (2, B, D, N)"
norm_parms = self.pack_norm_params(kwargs) # (2, B, 4)
B = x_t.shape[1]
# print(f"Step {t} Norm params:", norm_parms[:, 0, :])
noise_pred_h, noise_pred_o = self.point_cloud_model(x_t_input[0], x_t_input[1], t.reshape(1).expand(B),
norm_parms)
if self.consistent_center:
assert self.dm_pred_type != 'sample', 'incompatible dm predition type!'
noise_pred_h = noise_pred_h - torch.mean(noise_pred_h, dim=1, keepdim=True)
noise_pred_o = noise_pred_o - torch.mean(noise_pred_o, dim=1, keepdim=True)
xt_h = scheduler.step(noise_pred_h, t, x_t[0], **extra_step_kwargs).prev_sample
xt_o = scheduler.step(noise_pred_o, t, x_t[1], **extra_step_kwargs).prev_sample
if self.consistent_center:
xt_h = xt_h - torch.mean(xt_h, dim=1, keepdim=True)
xt_o = xt_o - torch.mean(xt_o, dim=1, keepdim=True)
return xt_h, xt_o
def denormalize_pclouds(self, x: Tensor, cent, radius, unscale: bool = True):
"""
first denormalize, then apply center and scale to original H+O coordinate
:param x:
:param cent: (B, 3)
:param radius: (B, 1)
:param unscale:
:return:
"""
# denormalize: scale down.
points = x[:, :, :3] / (self.scale_factor if unscale else 1)
# translation and scale back to H+O coordinate
points = points * 2 * radius.unsqueeze(-1) + cent.unsqueeze(1)
return points
def tensor_to_point_cloud(self, x: Tensor, /, denormalize: bool = False, unscale: bool = False):
"""
take binary into account
:param self:
:param x: (B, N, 4)
:param denormalize:
:param unscale:
:return:
"""
points = x[:, :, :3] / (self.scale_factor if unscale else 1)
if self.predict_color:
colors = self.denormalize(x[:, :, 3:]) if denormalize else x[:, :, 3:]
return Pointclouds(points=points, features=colors)
else:
assert x.shape[2] == 4
# add color to predicted binary labels
is_hum = x[:, :, 3] > 0.5
features = []
for mask in is_hum:
color = torch.zeros_like(x[0, :, :3]) + torch.tensor([0.5, 1.0, 0]).to(x.device)
color[mask, :] = torch.tensor([0.05, 1.0, 1.0]).to(x.device) # human is light blue, object light green
features.append(color)
return Pointclouds(points=points, features=features)
|