File size: 20,921 Bytes
2fd6166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
"""
model that use cross attention to predict human + object
"""

import inspect
import random
from typing import Optional
from torch import Tensor
import torch
import numpy as np

from pytorch3d.structures import Pointclouds
from pytorch3d.renderer import CamerasBase
from .model_diff_data import ConditionalPCDiffusionBehave
from .pvcnn.pvcnn_ho import PVCNN2HumObj
import torch.nn.functional as F
from pytorch3d.renderer import PerspectiveCameras
from .model_utils import get_num_points
from tqdm import tqdm


class CrossAttenHODiffusionModel(ConditionalPCDiffusionBehave):
    def init_pcloud_model(self, kwargs, point_cloud_model, point_cloud_model_embed_dim):
        """use cross attention model"""
        if point_cloud_model == 'pvcnn':
            self.point_cloud_model = PVCNN2HumObj(embed_dim=point_cloud_model_embed_dim,
                                        num_classes=self.out_channels,
                                        extra_feature_channels=(self.in_channels - 3),
                                        voxel_resolution_multiplier=kwargs.get('voxel_resolution_multiplier', 1),
                                        attn_type=kwargs.get('attn_type', 'simple-cross'),
                                        attn_weight=kwargs.get("attn_weight", 1.0)
                                 )
        else:
            raise ValueError(f"Unknown point cloud model {point_cloud_model}!")
        self.point_visible_test = kwargs.get("point_visible_test", 'single') # when doing point visibility test, use only human points or human + object?
        assert self.point_visible_test in ['single', 'combine'], f'invalide point visible test option {self.point_visible_test}'
        # print(f"Point visibility test is based on {self.point_visible_test} point clouds!")

    def forward_train(
        self,
        pc: Pointclouds,
        camera: Optional[CamerasBase],
        image_rgb: Optional[Tensor],
        mask: Optional[Tensor],
        return_intermediate_steps: bool = False,
        **kwargs
    ):
        "additional input (RGB, mask, camera, and pc) for object is read from kwargs"
        # assert not self.consistent_center
        assert not self.self_conditioning

        # Normalize colors and convert to tensor
        x0_h = self.point_cloud_to_tensor(pc, normalize=True, scale=True)  # this will not pack the point colors
        x0_o = self.point_cloud_to_tensor(kwargs.get('pc_obj'), normalize=True, scale=True)
        B, N, D = x0_h.shape

        # Sample random noise
        noise = torch.randn_like(x0_h)
        if self.consistent_center:
            # modification suggested by https://arxiv.org/pdf/2308.07837.pdf
            noise = noise - torch.mean(noise, dim=1, keepdim=True)

        # Sample random timesteps for each point_cloud
        timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,),
                                 device=self.device, dtype=torch.long)
        # timestep = torch.randint(0, 1, (B,),
        #                          device=self.device, dtype=torch.long)

        # Add noise to points
        xt_h = self.scheduler.add_noise(x0_h, noise, timestep)
        xt_o = self.scheduler.add_noise(x0_o, noise, timestep)
        norm_parms = self.pack_norm_params(kwargs) # (2, B, 4)

        # get input conditioning
        x_t_input_h, x_t_input_o = self.get_image_conditioning(camera, image_rgb, kwargs, mask, norm_parms, timestep,
                                                               xt_h, xt_o)

        # Diffusion prediction
        noise_pred_h, noise_pred_o = self.point_cloud_model(x_t_input_h, x_t_input_o, timestep, norm_parms)

        # Check
        if not noise_pred_h.shape == noise.shape:
            raise ValueError(f'{noise_pred_h.shape=} and {noise.shape=}')
        if not noise_pred_o.shape == noise.shape:
            raise ValueError(f'{noise_pred_o.shape=} and {noise.shape=}')

        # Loss
        loss_h = F.mse_loss(noise_pred_h, noise)
        loss_o = F.mse_loss(noise_pred_o, noise)

        loss = loss_h + loss_o

        # Whether to return intermediate steps
        if return_intermediate_steps:
            return loss, (x0_h, xt_h, noise, noise_pred_h)

        return loss, torch.tensor([loss_h, loss_o])

    def get_image_conditioning(self, camera, image_rgb, kwargs, mask, norm_parms, timestep, xt_h, xt_o):
        """
        compute image features for each point
        :param camera:
        :param image_rgb:
        :param kwargs:
        :param mask:
        :param norm_parms:
        :param timestep:
        :param xt_h:
        :param xt_o:
        :return:
        """
        if self.point_visible_test == 'single':
            # Visibility test is down independently for human and object
            x_t_input_h = self.get_input_with_conditioning(xt_h, camera=camera,
                                                           image_rgb=image_rgb, mask=mask, t=timestep)
            x_t_input_o = self.get_input_with_conditioning(xt_o, camera=kwargs.get('camera_obj'),
                                                           image_rgb=kwargs.get('rgb_obj'),
                                                           mask=kwargs.get('mask_obj'), t=timestep)
        elif self.point_visible_test == 'combine':
            # Combine human + object points to do visibility test and obtain features
            B, N = xt_h.shape[:2]  # (B, N, 3)
            # for human: transform object points first to H+O space, then to human space
            xt_o_in_ho = xt_o * 2 * norm_parms[1, :, 3:].unsqueeze(1) + norm_parms[1, :, :3].unsqueeze(1)
            xt_o_in_hum = (xt_o_in_ho - norm_parms[0, :, :3].unsqueeze(1)) / (2 * norm_parms[0, :, 3:].unsqueeze(1))
            # compute features for all points, take only first half feature for human
            x_t_input_h = self.get_input_with_conditioning(torch.cat([xt_h, xt_o_in_hum], 1), camera=camera,
                                                           image_rgb=image_rgb, mask=mask, t=timestep)[:,:N]
            # for object: transform human points to H+O space, then to object space
            xt_h_in_ho = xt_h * 2 * norm_parms[0, :, 3:].unsqueeze(1) + norm_parms[0, :, :3].unsqueeze(1)
            xt_h_in_obj = (xt_h_in_ho - norm_parms[1, :, :3].unsqueeze(1)) / (2 * norm_parms[1, :, 3:].unsqueeze(1))
            x_t_input_o = self.get_input_with_conditioning(torch.cat([xt_o, xt_h_in_obj], 1),
                                                           camera=kwargs.get('camera_obj'),
                                                           image_rgb=kwargs.get('rgb_obj'),
                                                           mask=kwargs.get('mask_obj'), t=timestep)[:, :N]
        else:
            raise NotImplementedError
        return x_t_input_h, x_t_input_o

    def forward(self, batch, mode: str = 'train', **kwargs):
        """"""
        images = torch.stack(batch['images'], 0).to('cuda')
        masks = torch.stack(batch['masks'], 0).to('cuda')
        pc = self.get_input_pc(batch)
        camera = PerspectiveCameras(
            R=torch.stack(batch['R']),
            T=torch.stack(batch['T_hum']),
            K=torch.stack(batch['K_hum']),
            device='cuda',
            in_ndc=True
        )
        grid_df = torch.stack(batch['grid_df'], 0).to('cuda') if 'grid_df' in batch else None
        num_points = kwargs.pop('num_points', get_num_points(pc))

        rgb_obj = torch.stack(batch['images_obj'], 0).to('cuda')
        masks_obj = torch.stack(batch['masks_obj'], 0).to('cuda')
        pc_obj = Pointclouds([x.to('cuda') for x in batch['pclouds_obj']])
        camera_obj = PerspectiveCameras(
            R=torch.stack(batch['R']),
            T=torch.stack(batch['T_obj']),
            K=torch.stack(batch['K_obj']),
            device='cuda',
            in_ndc=True
        )

        # normalization parameters
        cent_hum = torch.stack(batch['cent_hum'], 0).to('cuda')
        cent_obj = torch.stack(batch['cent_obj'], 0).to('cuda') # B, 3
        radius_hum = torch.stack(batch['radius_hum'], 0).to('cuda') # B, 1
        radius_obj = torch.stack(batch['radius_obj'], 0).to('cuda')

        # print(batch['image_path'])

        if mode == 'train':
            return self.forward_train(
                pc=pc,
                camera=camera,
                image_rgb=images,
                mask=masks,
                grid_df=grid_df,
                rgb_obj=rgb_obj,
                mask_obj=masks_obj,
                pc_obj=pc_obj,
                camera_obj=camera_obj,
                cent_hum=cent_hum,
                cent_obj=cent_obj,
                radius_hum=radius_hum,
                radius_obj=radius_obj,
            )
        elif mode == 'sample':
            # this use GT centers to do projection
            return self.forward_sample(
                num_points=num_points,
                camera=camera,
                image_rgb=images,
                mask=masks,
                gt_pc=pc,
                rgb_obj=rgb_obj,
                mask_obj=masks_obj,
                pc_obj=pc_obj,
                camera_obj=camera_obj,
                cent_hum=cent_hum,
                cent_obj=cent_obj,
                radius_hum=radius_hum,
                radius_obj=radius_obj,
                **kwargs)
        elif mode == 'interm-gt':
            return self.forward_sample(
                num_points=num_points,
                camera=camera,
                image_rgb=images,
                mask=masks,
                gt_pc=pc,
                rgb_obj=rgb_obj,
                mask_obj=masks_obj,
                pc_obj=pc_obj,
                camera_obj=camera_obj,
                cent_hum=cent_hum,
                cent_obj=cent_obj,
                radius_hum=radius_hum,
                radius_obj=radius_obj,
                sample_from_interm=True,
                **kwargs)
        elif mode == 'interm-pred':
            # use camera from predicted
            camera = PerspectiveCameras(
                R=torch.stack(batch['R']),
                T=torch.stack(batch['T_hum_scaled']),
                K=torch.stack(batch['K_hum']),
                device='cuda',
                in_ndc=True
            )
            camera_obj = PerspectiveCameras(
                R=torch.stack(batch['R']),
                T=torch.stack(batch['T_obj_scaled']),
                K=torch.stack(batch['K_obj']), # the camera should be human/object specific!!!
                device='cuda',
                in_ndc=True
            )
            # use pc from predicted
            pc = Pointclouds([x.to('cuda') for x in batch['pred_hum']])
            pc_obj = Pointclouds([x.to('cuda') for x in batch['pred_obj']])
            # use center and radius from predicted
            cent_hum = torch.stack(batch['cent_hum_pred'], 0).to('cuda')
            cent_obj = torch.stack(batch['cent_obj_pred'], 0).to('cuda')  # B, 3
            radius_hum = torch.stack(batch['radius_hum_pred'], 0).to('cuda')  # B, 1
            radius_obj = torch.stack(batch['radius_obj_pred'], 0).to('cuda')

            return self.forward_sample(
                num_points=num_points,
                camera=camera,
                image_rgb=images,
                mask=masks,
                gt_pc=pc,
                rgb_obj=rgb_obj,
                mask_obj=masks_obj,
                pc_obj=pc_obj,
                camera_obj=camera_obj,
                cent_hum=cent_hum,
                cent_obj=cent_obj,
                radius_hum=radius_hum,
                radius_obj=radius_obj,
                sample_from_interm=True,
                **kwargs)
        elif mode == 'interm-pred-ts':
            # use only estimate translation and scale, but sample from gaussian
            # this works, the camera is GT!!!
            pc = Pointclouds([x.to('cuda') for x in batch['pred_hum']])
            pc_obj = Pointclouds([x.to('cuda') for x in batch['pred_obj']])
            # use center and radius from predicted
            cent_hum = torch.stack(batch['cent_hum_pred'], 0).to('cuda')
            cent_obj = torch.stack(batch['cent_obj_pred'], 0).to('cuda')  # B, 3
            radius_hum = torch.stack(batch['radius_hum_pred'], 0).to('cuda')  # B, 1
            radius_obj = torch.stack(batch['radius_obj_pred'], 0).to('cuda')
            # print(cent_hum[0], radius_hum[0], cent_obj[0], radius_obj[0])

            return self.forward_sample(
                num_points=num_points,
                camera=camera,
                image_rgb=images,
                mask=masks,
                gt_pc=pc,
                rgb_obj=rgb_obj,
                mask_obj=masks_obj,
                pc_obj=pc_obj,
                camera_obj=camera_obj,
                cent_hum=cent_hum,
                cent_obj=cent_obj,
                radius_hum=radius_hum,
                radius_obj=radius_obj,
                sample_from_interm=False,
                **kwargs)
        else:
            raise NotImplementedError

    def forward_sample(
        self,
        num_points: int,
        camera: Optional[CamerasBase],
        image_rgb: Optional[Tensor],
        mask: Optional[Tensor],
        # Optional overrides
        scheduler: Optional[str] = 'ddpm',
        # Inference parameters
        num_inference_steps: Optional[int] = 1000,
        eta: Optional[float] = 0.0,  # for DDIM
        # Whether to return all the intermediate steps in generation
        return_sample_every_n_steps: int = -1,
        # Whether to disable tqdm
        disable_tqdm: bool = False,
        gt_pc: Pointclouds = None,
            **kwargs
    ):
        "use two models to run diffusion forward, and also use translation and scale to put them back"
        assert not self.self_conditioning
        # Get scheduler from mapping, or use self.scheduler if None
        scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler]

        # Get the size of the noise
        N = num_points
        B = 1 if image_rgb is None else image_rgb.shape[0]
        D = self.get_x_T_channel()
        device = self.device if image_rgb is None else image_rgb.device

        # sample from full steps or only a few steps
        sample_from_interm = kwargs.get('sample_from_interm', False)
        interm_steps = kwargs.get('noise_step') if sample_from_interm else -1

        xt_h = self.initialize_x_T(device, gt_pc, (B, N, D), interm_steps, scheduler)
        xt_o = self.initialize_x_T(device, kwargs.get('pc_obj', None), (B, N, D), interm_steps, scheduler)

        # the segmentation mask
        segm_mask = torch.zeros(B, 2*N, 1).to(device)
        segm_mask[:, :N] = 1.0

        # Set timesteps
        extra_step_kwargs = self.setup_reverse_process(eta, num_inference_steps, scheduler)

        # Loop over timesteps
        all_outputs = []
        return_all_outputs = (return_sample_every_n_steps > 0)
        progress_bar = tqdm(self.get_reverse_timesteps(scheduler, interm_steps),
                            desc=f'Sampling ({xt_h.shape})', disable=disable_tqdm)

        # print("Camera T:", camera.T[0], camera.R[0])
        # print("Camera_obj T:", kwargs.get('camera_obj').T[0], kwargs.get('camera_obj').R[0])

        norm_parms = self.pack_norm_params(kwargs)
        for i, t in enumerate(progress_bar):
            x_t_input_h, x_t_input_o = self.get_image_conditioning(camera, image_rgb,
                                                                   kwargs, mask,
                                                                   norm_parms,
                                                                   t,
                                                                   xt_h, xt_o)

            # One reverse step with conditioning
            xt_h, xt_o = self.reverse_step(extra_step_kwargs, scheduler, t, torch.stack([xt_h, xt_o], 0),
                                    torch.stack([x_t_input_h, x_t_input_o], 0), **kwargs)  # (B, N, D), D=3

            if (return_all_outputs and (i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1)):
                # print(xt_h.shape, kwargs.get('cent_hum').shape, kwargs.get('radius_hum').shape)
                x_t = torch.cat([self.denormalize_pclouds(xt_h, kwargs.get('cent_hum'), kwargs.get('radius_hum')),
                                 self.denormalize_pclouds(xt_o, kwargs.get('cent_obj'), kwargs.get('radius_obj'))], 1)
                # print(x_t.shape, xt_o.shape)
                all_outputs.append(torch.cat([x_t, segm_mask], -1))
                # print("Updating intermediate...")

        # Convert output back into a point cloud, undoing normalization and scaling
        x_t = torch.cat([self.denormalize_pclouds(xt_h, kwargs.get('cent_hum'), kwargs.get('radius_hum')),
                         self.denormalize_pclouds(xt_o, kwargs.get('cent_obj'), kwargs.get('radius_obj'))], 1)
        x_t = torch.cat([x_t, segm_mask], -1)
        output = self.tensor_to_point_cloud(x_t, denormalize=False, unscale=False)  # this convert the points back to original scale
        if return_all_outputs:
            all_outputs = torch.stack(all_outputs, dim=1)  # (B, sample_steps, N, D)
            all_outputs = [self.tensor_to_point_cloud(o, denormalize=False, unscale=False) for o in all_outputs]

        return (output, all_outputs) if return_all_outputs else output

    def get_reverse_timesteps(self, scheduler, interm_steps:int):
        """

        :param scheduler:
        :param interm_steps: start from some intermediate steps
        :return:
        """
        if interm_steps > 0:
            timesteps = torch.from_numpy(np.arange(0, interm_steps)[::-1].copy()).to(self.device)
        else:
            timesteps = scheduler.timesteps.to(self.device)
        return timesteps

    def pack_norm_params(self, kwargs:dict, scale=True):
        scale_factor = self.scale_factor if scale else 1.0
        hum = torch.cat([kwargs.get('cent_hum')*scale_factor, kwargs.get('radius_hum')], -1)
        obj = torch.cat([kwargs.get('cent_obj')*scale_factor, kwargs.get('radius_obj')], -1)
        return torch.stack([hum, obj], 0) # (2, B, 4)

    def reverse_step(self, extra_step_kwargs, scheduler, t, x_t, x_t_input, **kwargs):
        "x_t: (2, B, D, N), x_t_input: (2, B, D, N)"
        norm_parms = self.pack_norm_params(kwargs) # (2, B, 4)
        B = x_t.shape[1]
        # print(f"Step {t} Norm params:", norm_parms[:, 0, :])
        noise_pred_h, noise_pred_o = self.point_cloud_model(x_t_input[0], x_t_input[1], t.reshape(1).expand(B),
                                                            norm_parms)
        if self.consistent_center:
            assert self.dm_pred_type != 'sample', 'incompatible dm predition type!'
            noise_pred_h = noise_pred_h - torch.mean(noise_pred_h, dim=1, keepdim=True)
            noise_pred_o = noise_pred_o - torch.mean(noise_pred_o, dim=1, keepdim=True)

        xt_h = scheduler.step(noise_pred_h, t, x_t[0], **extra_step_kwargs).prev_sample
        xt_o = scheduler.step(noise_pred_o, t, x_t[1], **extra_step_kwargs).prev_sample

        if self.consistent_center:
            xt_h = xt_h - torch.mean(xt_h, dim=1, keepdim=True)
            xt_o = xt_o - torch.mean(xt_o, dim=1, keepdim=True)

        return xt_h, xt_o

    def denormalize_pclouds(self, x: Tensor, cent, radius, unscale: bool = True):
        """
        first denormalize, then apply center and scale to original H+O coordinate
        :param x:
        :param cent: (B, 3)
        :param radius: (B, 1)
        :param unscale:
        :return:
        """
        # denormalize: scale down.
        points = x[:, :, :3] / (self.scale_factor if unscale else 1)
        # translation and scale back to H+O coordinate
        points = points * 2 * radius.unsqueeze(-1) + cent.unsqueeze(1)
        return points

    def tensor_to_point_cloud(self, x: Tensor, /, denormalize: bool = False, unscale: bool = False):
        """
        take binary into account
        :param self:
        :param x: (B, N, 4)
        :param denormalize:
        :param unscale:
        :return:
        """
        points = x[:, :, :3] / (self.scale_factor if unscale else 1)
        if self.predict_color:
            colors = self.denormalize(x[:, :, 3:]) if denormalize else x[:, :, 3:]
            return Pointclouds(points=points, features=colors)
        else:
            assert x.shape[2] == 4
            # add color to predicted binary labels
            is_hum = x[:, :, 3] > 0.5
            features = []
            for mask in is_hum:
                color = torch.zeros_like(x[0, :, :3]) + torch.tensor([0.5, 1.0, 0]).to(x.device)
                color[mask, :] = torch.tensor([0.05, 1.0, 1.0]).to(x.device)  # human is light blue, object light green
                features.append(color)
            return Pointclouds(points=points, features=features)