File size: 18,560 Bytes
2fd6166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d94b63
2fd6166
 
 
9d94b63
2fd6166
 
 
 
 
9d94b63
2fd6166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d94b63
2fd6166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from pathlib import Path
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union

import numpy as np
import pytorch3d
import torch
from torch.utils.data import SequentialSampler
from omegaconf import DictConfig
from pytorch3d.implicitron.dataset.data_loader_map_provider import \
    SequenceDataLoaderMapProvider
from pytorch3d.implicitron.dataset.dataset_base import FrameData
from pytorch3d.implicitron.dataset.json_index_dataset import JsonIndexDataset
from pytorch3d.implicitron.dataset.json_index_dataset_map_provider_v2 import (
    JsonIndexDatasetMapProviderV2, registry)
from pytorch3d.implicitron.tools.config import expand_args_fields
from pytorch3d.renderer.cameras import CamerasBase
from torch.utils.data import DataLoader
from pytorch3d.datasets import R2N2, collate_batched_meshes

from configs.structured import CO3DConfig, DataloaderConfig, ProjectConfig, Optional
from .utils import DatasetMap



def get_dataset(cfg: ProjectConfig):
    
    if cfg.dataset.type == 'co3dv2':
        from .exclude_sequence import EXCLUDE_SEQUENCE, LOW_QUALITY_SEQUENCE
        dataset_cfg: CO3DConfig = cfg.dataset
        dataloader_cfg: DataloaderConfig = cfg.dataloader

        # Exclude bad and low-quality sequences, XH: why this is needed?
        exclude_sequence = []
        exclude_sequence.extend(EXCLUDE_SEQUENCE.get(dataset_cfg.category, []))
        exclude_sequence.extend(LOW_QUALITY_SEQUENCE.get(dataset_cfg.category, []))
        
        # Whether to load pointclouds
        kwargs = dict(
            remove_empty_masks=True,
            n_frames_per_sequence=1,
            load_point_clouds=True,
            max_points=dataset_cfg.max_points,
            image_height=dataset_cfg.image_size,
            image_width=dataset_cfg.image_size,
            mask_images=dataset_cfg.mask_images,
            exclude_sequence=exclude_sequence,
            pick_sequence=() if dataset_cfg.restrict_model_ids is None else dataset_cfg.restrict_model_ids,
        )

        # Get dataset mapper
        dataset_map_provider_type = registry.get(JsonIndexDatasetMapProviderV2, "JsonIndexDatasetMapProviderV2")
        expand_args_fields(dataset_map_provider_type)
        dataset_map_provider = dataset_map_provider_type(
            category=dataset_cfg.category,
            subset_name=dataset_cfg.subset_name,
            dataset_root=dataset_cfg.root,
            test_on_train=False,
            only_test_set=False,
            load_eval_batches=True,
            dataset_JsonIndexDataset_args=DictConfig(kwargs),
        )

        # Get datasets
        datasets = dataset_map_provider.get_dataset_map() # how to select specific frames??

        # PATCH BUG WITH POINT CLOUD LOCATIONS!
        for dataset in (datasets["train"], datasets["val"]):
            # print(dataset.seq_annots.items())
            for key, ann in dataset.seq_annots.items():
                correct_point_cloud_path = Path(dataset.dataset_root) / Path(*Path(ann.point_cloud.path).parts[-3:])
                assert correct_point_cloud_path.is_file(), correct_point_cloud_path
                ann.point_cloud.path = str(correct_point_cloud_path)

        # Get dataloader mapper
        data_loader_map_provider_type = registry.get(SequenceDataLoaderMapProvider, "SequenceDataLoaderMapProvider")
        expand_args_fields(data_loader_map_provider_type)
        data_loader_map_provider = data_loader_map_provider_type(
            batch_size=dataloader_cfg.batch_size,
            num_workers=dataloader_cfg.num_workers,
        )

        # QUICK HACK: Patch the train dataset because it is not used but it throws an error
        if (len(datasets['train']) == 0 and len(datasets[dataset_cfg.eval_split]) > 0 and 
                dataset_cfg.restrict_model_ids is not None and cfg.run.job == 'sample'):
            datasets = DatasetMap(train=datasets[dataset_cfg.eval_split], val=datasets[dataset_cfg.eval_split], 
                                  test=datasets[dataset_cfg.eval_split])
            # XH: why all eval split?
            print('Note: You used restrict_model_ids and there were no ids in the train set.')

        # Get dataloaders
        dataloaders = data_loader_map_provider.get_data_loader_map(datasets)
        dataloader_train = dataloaders['train']
        dataloader_val = dataloader_vis = dataloaders[dataset_cfg.eval_split]

        # Replace validation dataloader sampler with SequentialSampler
        # seems to be randomly sampled? with a fixed random seed? but one cannot control which image is being sampled??
        dataloader_val.batch_sampler.sampler = SequentialSampler(dataloader_val.batch_sampler.sampler.data_source)

        # Modify for accelerate
        dataloader_train.batch_sampler.drop_last = True
        dataloader_val.batch_sampler.drop_last = False
    elif cfg.dataset.type == 'shapenet_r2n2':
        # from ..configs.structured import ShapeNetR2N2Config
        from .r2n2_my import R2N2Sample
        dataset_cfg: ShapeNetR2N2Config = cfg.dataset
        # for k in dataset_cfg:
        #     print(k)
        datasets = [R2N2Sample(dataset_cfg.max_points, dataset_cfg.fix_sample,
                               dataset_cfg.image_size, cfg.augmentations,
                               s, dataset_cfg.shapenet_dir,
                               dataset_cfg.r2n2_dir, dataset_cfg.splits_file,
                               load_textures=False, return_all_views=True) for s in ['train', 'val', 'test']]
        dataloader_train = DataLoader(datasets[0], batch_size=cfg.dataloader.batch_size,
                                      collate_fn=collate_batched_meshes,
                                      num_workers=cfg.dataloader.num_workers, shuffle=True)
        dataloader_val = DataLoader(datasets[1], batch_size=cfg.dataloader.batch_size,
                                      collate_fn=collate_batched_meshes,
                                    num_workers=cfg.dataloader.num_workers, shuffle=False)
        dataloader_vis = DataLoader(datasets[2], batch_size=cfg.dataloader.batch_size,
                                      collate_fn=collate_batched_meshes,
                                    num_workers=cfg.dataloader.num_workers, shuffle=False)

    elif cfg.dataset.type in ['behave', 'behave-objonly', 'behave-humonly', 'behave-dtransl',
                              'behave-objonly-segm', 'behave-humonly-segm', 'behave-attn',
                              'behave-test', 'behave-attn-test', 'behave-hum-pe', 'behave-hum-noscale',
                              'behave-hum-surf', 'behave-objv2v']:
        from .behave_dataset import BehaveDataset, NTUDataset, BehaveObjOnly, BehaveHumanOnly, BehaveHumanOnlyPosEnc
        from .behave_dataset import BehaveHumanOnlySegmInput, BehaveObjOnlySegmInput, BehaveTestOnly, BehaveHumNoscale
        from .behave_dataset import BehaveHumanOnlySurfSample
        from .dtransl_dataset import DirectTranslDataset
        from .behave_paths import DataPaths
        from configs.structured import BehaveDatasetConfig
        from .behave_crossattn import BehaveCrossAttnDataset, BehaveCrossAttnTest
        from .behave_dataset import BehaveObjOnlyV2V

        dataset_cfg: BehaveDatasetConfig = cfg.dataset
        # print(dataset_cfg.behave_dir)
        train_paths, val_paths = DataPaths.load_splits(dataset_cfg.split_file, dataset_cfg.behave_dir)
        # exit(0)

        # split validation paths to only consider the selected batches
        bs = cfg.dataloader.batch_size
        num_batches_total = int(np.ceil(len(val_paths)/cfg.dataloader.batch_size))
        end_idx = cfg.run.batch_end if cfg.run.batch_end is not None else num_batches_total
        # print(cfg.run.batch_end, cfg.run.batch_start, end_idx)
        val_paths = val_paths[cfg.run.batch_start*bs:end_idx*bs]

        if cfg.dataset.type == 'behave':
            train_type = BehaveDataset
            val_datatype = BehaveDataset if 'ntu' not in dataset_cfg.split_file else NTUDataset
        elif cfg.dataset.type == 'behave-test':
            train_type = BehaveDataset
            val_datatype = BehaveTestOnly
        elif cfg.dataset.type == 'behave-objonly':
            train_type = BehaveObjOnly
            val_datatype = BehaveObjOnly
            assert 'ntu' not in dataset_cfg.split_file, 'ntu not implemented!'
        elif cfg.dataset.type == 'behave-humonly':
            train_type = BehaveHumanOnly
            val_datatype = BehaveHumanOnly
            assert 'ntu' not in dataset_cfg.split_file, 'ntu not implemented!'
        elif cfg.dataset.type == 'behave-hum-noscale':
            train_type = BehaveHumNoscale
            val_datatype = BehaveHumNoscale
        elif cfg.dataset.type == 'behave-hum-pe':
            train_type = BehaveHumanOnlyPosEnc
            val_datatype = BehaveHumanOnlyPosEnc
        elif cfg.dataset.type == 'behave-hum-surf':
            train_type = BehaveHumanOnlySurfSample
            val_datatype = BehaveHumanOnlySurfSample
        elif cfg.dataset.type == 'behave-humonly-segm':
            assert cfg.dataset.ho_segm_pred_path is not None, 'please specify predicted HO segmentation!'
            train_type = BehaveHumanOnly
            val_datatype = BehaveHumanOnlySegmInput
            assert 'ntu' not in dataset_cfg.split_file, 'ntu not implemented!'
        elif cfg.dataset.type == 'behave-objonly-segm':
            assert cfg.dataset.ho_segm_pred_path is not None, 'please specify predicted HO segmentation!'
            train_type = BehaveObjOnly
            val_datatype = BehaveObjOnlySegmInput
            assert 'ntu' not in dataset_cfg.split_file, 'ntu not implemented!'
        elif cfg.dataset.type == 'behave-dtransl':
            train_type = DirectTranslDataset
            val_datatype = DirectTranslDataset
        elif cfg.dataset.type == 'behave-attn':
            train_type = BehaveCrossAttnDataset
            val_datatype = BehaveCrossAttnDataset
        elif cfg.dataset.type == 'behave-attn-test':
            train_type = BehaveCrossAttnDataset
            val_datatype = BehaveCrossAttnTest
        elif cfg.dataset.type == 'behave-objv2v':
            train_type = BehaveObjOnlyV2V
            val_datatype = BehaveObjOnlyV2V
        else:
            raise NotImplementedError

        dataset_train = train_type(train_paths, dataset_cfg.max_points, dataset_cfg.fix_sample,
                                   (dataset_cfg.image_size, dataset_cfg.image_size),
                                   split='train', sample_ratio_hum=dataset_cfg.sample_ratio_hum,
                                  normalize_type=dataset_cfg.normalize_type, smpl_type='gt',
                                     load_corr_points=dataset_cfg.load_corr_points,
                                     uniform_obj_sample=dataset_cfg.uniform_obj_sample,
                                  bkg_type=dataset_cfg.bkg_type,
                                  bbox_params=dataset_cfg.bbox_params,
                                  pred_binary=cfg.model.predict_binary,
                                  ho_segm_pred_path=cfg.dataset.ho_segm_pred_path,
                                  compute_closest_points=cfg.model.model_name=='pc2-diff-ho-tune-newloss',
                                  use_gt_transl=cfg.dataset.use_gt_transl,
                                  cam_noise_std=cfg.dataset.cam_noise_std,
                                  sep_same_crop=cfg.dataset.sep_same_crop,
                                  aug_blur=cfg.dataset.aug_blur,
                                  std_coverage=cfg.dataset.std_coverage,
                                   v2v_path=cfg.dataset.v2v_path)

        dataset_val = val_datatype(val_paths, dataset_cfg.max_points, dataset_cfg.fix_sample,
                                      (dataset_cfg.image_size, dataset_cfg.image_size),
                                      split='val', sample_ratio_hum=dataset_cfg.sample_ratio_hum,
                                      normalize_type=dataset_cfg.normalize_type, smpl_type=dataset_cfg.smpl_type,
                                    load_corr_points=dataset_cfg.load_corr_points,
                                   test_transl_type=dataset_cfg.test_transl_type,
                                   uniform_obj_sample=dataset_cfg.uniform_obj_sample,
                                   bkg_type=dataset_cfg.bkg_type,
                                  bbox_params=dataset_cfg.bbox_params,
                                   pred_binary=cfg.model.predict_binary,
                                   ho_segm_pred_path=cfg.dataset.ho_segm_pred_path,
                                   compute_closest_points=cfg.model.model_name=='pc2-diff-ho-tune-newloss',
                                   use_gt_transl=cfg.dataset.use_gt_transl,
                                   sep_same_crop=cfg.dataset.sep_same_crop,
                                   std_coverage=cfg.dataset.std_coverage,
                                   v2v_path=cfg.dataset.v2v_path)
        # dataset_test = val_datatype(val_paths, dataset_cfg.max_points, dataset_cfg.fix_sample,
        #                             (dataset_cfg.image_size, dataset_cfg.image_size),
        #                             split='test', sample_ratio_hum=dataset_cfg.sample_ratio_hum,
        #                             normalize_type=dataset_cfg.normalize_type, smpl_type=dataset_cfg.smpl_type,
        #                              load_corr_points=dataset_cfg.load_corr_points,
        #                             test_transl_type=dataset_cfg.test_transl_type,
        #                             uniform_obj_sample=dataset_cfg.uniform_obj_sample,
        #                             bkg_type=dataset_cfg.bkg_type,
        #                           bbox_params=dataset_cfg.bbox_params,
        #                             pred_binary=cfg.model.predict_binary,
        #                             ho_segm_pred_path=cfg.dataset.ho_segm_pred_path,
        #                             compute_closest_points=cfg.model.model_name=='pc2-diff-ho-tune-newloss',
        #                             use_gt_transl=cfg.dataset.use_gt_transl,
        #                             sep_same_crop=cfg.dataset.sep_same_crop)
        dataloader_train = DataLoader(dataset_train, batch_size=cfg.dataloader.batch_size,
                                      collate_fn=collate_batched_meshes,
                                      num_workers=cfg.dataloader.num_workers, shuffle=True)
        shuffle = cfg.run.job == 'train'
        dataloader_val = DataLoader(dataset_val, batch_size=cfg.dataloader.batch_size,
                                    collate_fn=collate_batched_meshes,
                                    num_workers=cfg.dataloader.num_workers, shuffle=shuffle)
        dataloader_vis = DataLoader(dataset_val, batch_size=cfg.dataloader.batch_size,
                                    collate_fn=collate_batched_meshes,
                                    num_workers=cfg.dataloader.num_workers, shuffle=shuffle)

        # datasets = [BehaveDataset(p, dataset_cfg.max_points, dataset_cfg.fix_sample,
        #                            (dataset_cfg.image_size, dataset_cfg.image_size),
        #                            split=s, sample_ratio_hum=dataset_cfg.sample_ratio_hum,
        #                           normalize_type=dataset_cfg.normalize_type) for p, s in zip([train_paths, val_paths, val_paths],
        #                                                                                                     ['train', 'val', 'test'])]
        # dataloader_train = DataLoader(datasets[0], batch_size=cfg.dataloader.batch_size,
        #                               collate_fn=collate_batched_meshes,
        #                               num_workers=cfg.dataloader.num_workers, shuffle=True)
        # dataloader_val = DataLoader(datasets[1], batch_size=cfg.dataloader.batch_size,
        #                             collate_fn=collate_batched_meshes,
        #                             num_workers=cfg.dataloader.num_workers, shuffle=False)
        # dataloader_vis = DataLoader(datasets[2], batch_size=cfg.dataloader.batch_size,
        #                             collate_fn=collate_batched_meshes,
        #                             num_workers=cfg.dataloader.num_workers, shuffle=False)
    elif cfg.dataset.type in ['shape']:
        from .shape_dataset import ShapeDataset
        from .behave_paths import DataPaths
        from configs.structured import ShapeDatasetConfig
        dataset_cfg: ShapeDatasetConfig = cfg.dataset

        train_paths, _ = DataPaths.load_splits(dataset_cfg.split_file, dataset_cfg.behave_dir)
        val_paths = train_paths # same as training, this is for overfitting
        # split validation paths to only consider the selected batches
        bs = cfg.dataloader.batch_size
        num_batches_total = int(np.ceil(len(val_paths) / cfg.dataloader.batch_size))
        end_idx = cfg.run.batch_end if cfg.run.batch_end is not None else num_batches_total
        # print(cfg.run.batch_end, cfg.run.batch_start, end_idx)
        val_paths = val_paths[cfg.run.batch_start * bs:end_idx * bs]

        dataset_train = ShapeDataset(train_paths, dataset_cfg.max_points, dataset_cfg.fix_sample,
                                   (dataset_cfg.image_size, dataset_cfg.image_size),
                                   split='train', )
        dataset_val = ShapeDataset(val_paths, dataset_cfg.max_points, dataset_cfg.fix_sample,
                                  (dataset_cfg.image_size, dataset_cfg.image_size),
                                  split='train', )
        dataloader_train = DataLoader(dataset_train, batch_size=cfg.dataloader.batch_size,
                                      collate_fn=collate_batched_meshes,
                                      num_workers=cfg.dataloader.num_workers, shuffle=True)
        shuffle = cfg.run.job == 'train'
        dataloader_val = DataLoader(dataset_val, batch_size=cfg.dataloader.batch_size,
                                    collate_fn=collate_batched_meshes,
                                    num_workers=cfg.dataloader.num_workers, shuffle=shuffle)
        dataloader_vis = DataLoader(dataset_val, batch_size=cfg.dataloader.batch_size,
                                    collate_fn=collate_batched_meshes,
                                    num_workers=cfg.dataloader.num_workers, shuffle=shuffle)
    else:
        raise NotImplementedError(cfg.dataset.type)
    
    return dataloader_train, dataloader_val, dataloader_vis