Spaces:
Sleeping
Sleeping
File size: 11,353 Bytes
2fd6166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
"""
a simple wrapper for pytorch3d rendering
Cite: BEHAVE: Dataset and Method for Tracking Human Object Interaction
"""
import numpy as np
import torch
from copy import deepcopy
# Data structures and functions for rendering
from pytorch3d.renderer import (
PointLights,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
TexturesVertex,
PerspectiveCameras,
PointsRasterizer,
AlphaCompositor,
PointsRasterizationSettings,
)
from pytorch3d.structures import Meshes, join_meshes_as_scene, Pointclouds
SMPL_OBJ_COLOR_LIST = [
[0.65098039, 0.74117647, 0.85882353], # SMPL
[251 / 255.0, 128 / 255.0, 114 / 255.0], # object
]
class MeshRendererWrapper:
"a simple wrapper for the pytorch3d mesh renderer"
def __init__(self, image_size=1200,
faces_per_pixel=1,
device='cuda:0',
blur_radius=0, lights=None,
materials=None, max_faces_per_bin=50000):
self.image_size = image_size
self.faces_per_pixel=faces_per_pixel
self.max_faces_per_bin=max_faces_per_bin # prevent overflow, see https://github.com/facebookresearch/pytorch3d/issues/348
self.blur_radius = blur_radius
self.device = device
self.lights=lights if lights is not None else PointLights(
((0.5, 0.5, 0.5),), ((0.5, 0.5, 0.5),), ((0.05, 0.05, 0.05),), ((0, -2, 0),), device
)
self.materials = materials
self.renderer = self.setup_renderer()
def setup_renderer(self):
# for sillhouette rendering
sigma = 1e-4
raster_settings = RasterizationSettings(
image_size=self.image_size,
blur_radius=self.blur_radius,
# blur_radius=np.log(1. / 1e-4 - 1.) * sigma, # this will create large sphere for each face
faces_per_pixel=self.faces_per_pixel,
clip_barycentric_coords=False,
max_faces_per_bin=self.max_faces_per_bin
)
shader = SoftPhongShader(
device=self.device,
lights=self.lights,
materials=self.materials)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
raster_settings=raster_settings),
shader=shader
)
return renderer
def render(self, meshes, cameras, ret_mask=False, mode='rgb'):
assert len(meshes.faces_list()) == 1, 'currently only support batch size =1 rendering!'
images = self.renderer(meshes, cameras=cameras)
# print(images.shape)
if ret_mask or mode=='mask':
mask = images[0, ..., 3].cpu().detach().numpy()
return images[0, ..., :3].cpu().detach().numpy(), mask > 0
return images[0, ..., :3].cpu().detach().numpy()
def get_kinect_camera(device='cuda:0', kid=1):
R, T = torch.eye(3), torch.zeros(3)
R[0, 0] = R[1, 1] = -1 # pytorch3d y-axis up, need to rotate to kinect coordinate
R = R.unsqueeze(0)
T = T.unsqueeze(0)
assert kid in [0, 1, 2, 3], f'invalid kinect index {kid}!'
if kid == 0:
fx, fy = 976.212, 976.047
cx, cy = 1017.958, 787.313
elif kid == 1:
fx, fy = 979.784, 979.840 # for original kinect coordinate system
cx, cy = 1018.952, 779.486
elif kid == 2:
fx, fy = 974.899, 974.337
cx, cy = 1018.747, 786.176
else:
fx, fy = 972.873, 972.790
cx, cy = 1022.0565, 770.397
color_w, color_h = 2048, 1536 # kinect color image size
cam_center = torch.tensor((cx, cy), dtype=torch.float32).unsqueeze(0)
focal_length = torch.tensor((fx, fy), dtype=torch.float32).unsqueeze(0)
cam = PerspectiveCameras(focal_length=focal_length, principal_point=cam_center,
image_size=((color_w, color_h),),
device=device,
R=R, T=T)
return cam
class PcloudRenderer:
"a simple wrapper for pytorch3d point cloud renderer"
def __init__(self, image_size=1024, radius=0.005, points_per_pixel=10,
device='cuda:0', bin_size=128, batch_size=1, ret_depth=False):
camera_centers = []
focal_lengths = []
for i in range(batch_size):
camera_centers.append(torch.Tensor([image_size / 2., image_size / 2.]).to(device))
focal_lengths.append(torch.Tensor([image_size / 2., image_size / 2.]).to(device))
self.image_size = image_size
self.device = device
self.camera_center = torch.stack(camera_centers)
self.focal_length = torch.stack(focal_lengths)
self.ret_depth = ret_depth # return depth map or not
self.renderer = self.setup_renderer(radius, points_per_pixel, bin_size)
def render(self, pc, cameras, mode='image'):
# TODO: support batch rendering
"""
render the point cloud, compute the world coordinate of each pixel based on zbuf
image: (H, W, 3)
xyz_world: (H, W, 3), the third dimension is the xyz coordinate in world space
"""
# assert cameras.R.shape[0]==1, "batch rendering is not supported for now!"
images, fragments = self.renderer(pc, cameras=cameras)
if mode=='image':
if images.shape[0] == 1:
img = images[0, ..., :3].cpu().numpy().copy()
else:
img = images[..., :3].cpu().numpy().copy()
return img
elif mode=='mask':
zbuf = torch.mean(fragments.zbuf, -1) # (B, H, W)
masks = zbuf >= 0
if images.shape[0] == 1:
img = images[0, ..., :3].cpu().numpy()
masks = masks[0].cpu().numpy().astype(bool)
else:
img = images[..., :3].cpu().numpy()
masks = masks.cpu().numpy().astype(bool)
return img, masks
def get_xy_ndc(self):
"""
return (H, W, 2), each pixel is the x,y coordinate in NDC space
"""
py, px = torch.meshgrid(torch.linspace(0, self.image_size-1, self.image_size),
torch.linspace(0, self.image_size-1, self.image_size))
x_ndc = 1 - 2*px/(self.image_size - 1)
y_ndc = 1 - 2*py/(self.image_size - 1)
xy_ndc = torch.stack([x_ndc, y_ndc], axis=-1).to(self.device)
return xy_ndc.squeeze(0).unsqueeze(0)
def setup_renderer(self, radius, points_per_pixel, bin_size):
raster_settings = PointsRasterizationSettings(
image_size=self.image_size,
# radius=0.003,
radius=radius,
points_per_pixel=points_per_pixel,
bin_size=bin_size,
max_points_per_bin=500000
)
# Create a points renderer by compositing points using an alpha compositor (nearer points
# are weighted more heavily). See [1] for an explanation.
rasterizer = PointsRasterizer(raster_settings=raster_settings)
renderer = PointsRendererWithFragments(
rasterizer=rasterizer,
compositor=AlphaCompositor()
)
return renderer
class PointsRendererWithFragments(torch.nn.Module):
def __init__(self, rasterizer, compositor):
super().__init__()
self.rasterizer = rasterizer
self.compositor = compositor
def forward(self, point_clouds, **kwargs) -> (torch.Tensor, torch.Tensor):
fragments = self.rasterizer(point_clouds, **kwargs)
# Construct weights based on the distance of a point to the true point.
# However, this could be done differently: e.g. predicted as opposed
# to a function of the weights.
r = self.rasterizer.raster_settings.radius
dists2 = fragments.dists.permute(0, 3, 1, 2)
weights = 1 - dists2 / (r * r)
images = self.compositor(
fragments.idx.long().permute(0, 3, 1, 2),
weights,
point_clouds.features_packed().permute(1, 0),
**kwargs,
)
# permute so image comes at the end
images = images.permute(0, 2, 3, 1)
return images, fragments
# class PcloudsRenderer
class DepthRasterizer(torch.nn.Module):
"""
simply rasterize a mesh or point cloud to depth image
"""
def __init__(self, image_size, dtype='pc',
radius=0.005, points_per_pixel=1,
bin_size=128,
blur_radius=0,
max_faces_per_bin=50000,
faces_per_pixel=1,):
"""
image_size: (height, width)
"""
super(DepthRasterizer, self).__init__()
if dtype == 'pc':
raster_settings = PointsRasterizationSettings(
image_size=image_size,
radius=radius,
points_per_pixel=points_per_pixel,
bin_size=bin_size
)
self.rasterizer = PointsRasterizer(raster_settings=raster_settings)
elif dtype == 'mesh':
raster_settings = RasterizationSettings(
image_size=image_size,
blur_radius=blur_radius,
# blur_radius=np.log(1. / 1e-4 - 1.) * sigma, # this will create large sphere for each face
faces_per_pixel=faces_per_pixel,
clip_barycentric_coords=False,
max_faces_per_bin=max_faces_per_bin
)
self.rasterizer=MeshRasterizer(raster_settings=raster_settings)
else:
raise NotImplemented
def forward(self, data, to_np=True, **kwargs):
fragments = self.rasterizer(data, **kwargs)
if to_np:
zbuf = fragments.zbuf # (B, H, W, points_per_pixel)
return zbuf[0, ..., 0].cpu().numpy()
return fragments.zbuf
def test_depth_rasterizer():
from psbody.mesh import Mesh
import cv2
m = Mesh()
m.load_from_file("/BS/xxie-4/work/kindata/Sep29_shuo_chairwood_hand/t0003.000/person/person.ply")
device = 'cuda:0'
pc = Pointclouds([torch.from_numpy(m.v).float().to(device)],
features=[torch.from_numpy(m.vc).float().to(device)])
rasterizer = DepthRasterizer(image_size=(480, 640))
camera = get_kinect_camera(device)
depth = rasterizer(pc, cameras=camera)
std = torch.std(depth, -1)
print('max std', torch.max(std)) # maximum std is up to 1.7m, too much!
print('min std', torch.min(std))
print(depth.shape)
dmap = depth[0, ..., 0].cpu().numpy()
dmap[dmap<0] = 0
cv2.imwrite('debug/depth.png', (dmap*1000).astype(np.uint16))
def test_mesh_rasterizer():
from psbody.mesh import Mesh
import cv2
m = Mesh()
m.load_from_file("/BS/xxie-4/work/kindata/Sep29_shuo_chairwood_hand/t0003.000/person/fit02/person_fit.ply")
device = 'cuda:0'
mesh = Meshes([torch.from_numpy(m.v).float().to(device)],
[torch.from_numpy(m.f.astype(int)).to(device)])
rasterizer = DepthRasterizer(image_size=(480, 640), dtype='mesh')
camera = get_kinect_camera(device)
depth = rasterizer(mesh, to_np=False, cameras=camera)
print(depth.shape)
dmap = depth[0, ..., 0].cpu().numpy()
dmap[dmap < 0] = 0
cv2.imwrite('debug/depth_mesh.png', (dmap * 1000).astype(np.uint16))
if __name__ == '__main__':
# test_depth_rasterizer()
test_mesh_rasterizer()
|