Spaces:
Sleeping
Sleeping
File size: 12,059 Bytes
2fd6166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
from typing import Optional, Union
import torch
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler
from diffusers.schedulers.scheduling_lms_discrete import LMSDiscreteScheduler
from diffusers import ModelMixin
from pytorch3d.implicitron.dataset.data_loader_map_provider import FrameData
from pytorch3d.renderer import PointsRasterizationSettings, PointsRasterizer
from pytorch3d.renderer.cameras import CamerasBase
from pytorch3d.structures import Pointclouds
from torch import Tensor
from .feature_model import FeatureModel
from .model_utils import compute_distance_transform
SchedulerClass = Union[DDPMScheduler, DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
class PointCloudProjectionModel(ModelMixin):
def __init__(
self,
image_size: int,
image_feature_model: str,
use_local_colors: bool = True,
use_local_features: bool = True,
use_global_features: bool = False,
use_mask: bool = True,
use_distance_transform: bool = True,
predict_shape: bool = True,
predict_color: bool = False,
process_color: bool = False,
image_color_channels: int = 3, # for the input image, not the points
color_channels: int = 3, # for the points, not the input image
colors_mean: float = 0.5,
colors_std: float = 0.5,
scale_factor: float = 1.0,
# Rasterization settings
raster_point_radius: float = 0.0075, # point size
raster_points_per_pixel: int = 1, # a single point per pixel, for now
bin_size: int = 0,
model_name=None,
# additional arguments added by XH
load_sample_init=False,
sample_init_scale=1.0,
test_init_with_gtpc=False,
consistent_center=False, # from https://arxiv.org/pdf/2308.07837.pdf
voxel_resolution_multiplier: int=1,
predict_binary: bool=False, # predict a binary class label
lw_binary: float=1.0,
binary_training_noise_std: float=0.1,
dm_pred_type: str='epsilon', # diffusion prediction type
self_conditioning=False,
**kwargs,
):
super().__init__()
self.image_size = image_size
self.scale_factor = scale_factor
self.use_local_colors = use_local_colors
self.use_local_features = use_local_features
self.use_global_features = use_global_features
self.use_mask = use_mask
self.use_distance_transform = use_distance_transform
self.predict_shape = predict_shape # default False
self.predict_color = predict_color # default True
self.process_color = process_color
self.image_color_channels = image_color_channels
self.color_channels = color_channels
self.colors_mean = colors_mean
self.colors_std = colors_std
self.model_name = model_name
print("PointCloud Model scale factor:", self.scale_factor, 'Model name:', self.model_name)
self.predict_binary = predict_binary
self.lw_binary = lw_binary
self.self_conditioning = self_conditioning
# Types of conditioning that are used
self.use_local_conditioning = self.use_local_colors or self.use_local_features or self.use_mask
self.use_global_conditioning = self.use_global_features
self.kwargs = kwargs
# Create feature model
self.feature_model = FeatureModel(image_size, image_feature_model)
# Input size
self.in_channels = 3 # 3 for 3D point positions
if self.use_local_colors: # whether color should be an input
self.in_channels += self.image_color_channels
if self.use_local_features:
self.in_channels += self.feature_model.feature_dim
if self.use_global_features:
self.in_channels += self.feature_model.feature_dim
if self.use_mask:
self.in_channels += 2 if self.use_distance_transform else 1
if self.process_color:
self.in_channels += self.color_channels # point color added to input or not, default False
if self.self_conditioning:
self.in_channels += 3 # add self conditioning
self.in_channels = self.add_extra_input_chennels(self.in_channels)
if self.model_name in ['pc2-diff-ho-sepsegm', 'diff-ho-attn']:
self.in_channels += 2 if self.use_distance_transform else 1
# Output size
self.out_channels = 0
if self.predict_shape:
self.out_channels += 3
if self.predict_color:
self.out_channels += self.color_channels
if self.predict_binary:
print("Output binary classification score!")
self.out_channels += 1
# Save rasterization settings
self.raster_settings = PointsRasterizationSettings(
image_size=(image_size, image_size),
radius=raster_point_radius,
points_per_pixel=raster_points_per_pixel,
bin_size=bin_size,
)
def add_extra_input_chennels(self, input_channels):
return input_channels
def denormalize(self, x: Tensor, /, clamp: bool = True):
x = x * self.colors_std + self.colors_mean
return torch.clamp(x, 0, 1) if clamp else x
def normalize(self, x: Tensor, /):
x = (x - self.colors_mean) / self.colors_std
return x
def get_global_conditioning(self, image_rgb: Tensor):
global_conditioning = []
if self.use_global_features:
global_conditioning.append(self.feature_model(image_rgb,
return_cls_token_only=True)) # (B, D)
global_conditioning = torch.cat(global_conditioning, dim=1) # (B, D_cond)
return global_conditioning
def get_local_conditioning(self, image_rgb: Tensor, mask: Tensor):
"""
compute per-point conditioning
Parameters
----------
image_rgb: (B, 3, 224, 224), values normalized to 0-1, background is masked by the given mask
mask: (B, 1, 224, 224), or (B, 2, 224, 224) for h+o
"""
local_conditioning = []
# import pdb; pdb.set_trace()
if self.use_local_colors: # XH: default True
local_conditioning.append(self.normalize(image_rgb))
if self.use_local_features: # XH: default True
local_conditioning.append(self.feature_model(image_rgb)) # I guess no mask here? feature model: 'vit_small_patch16_224_mae'
if self.use_mask: # default True
local_conditioning.append(mask.float())
if self.use_distance_transform: # default True
if not self.use_mask:
raise ValueError('No mask for distance transform?')
if mask.is_floating_point():
mask = mask > 0.5
local_conditioning.append(compute_distance_transform(mask))
local_conditioning = torch.cat(local_conditioning, dim=1) # (B, D_cond, H, W)
return local_conditioning
@torch.autocast('cuda', dtype=torch.float32)
def surface_projection(
self, points: Tensor, camera: CamerasBase, local_features: Tensor,
):
B, C, H, W, device = *local_features.shape, local_features.device
R = self.raster_settings.points_per_pixel
N = points.shape[1]
# Scale camera by scaling T. ASSUMES CAMERA IS LOOKING AT ORIGIN!
camera = camera.clone()
camera.T = camera.T * self.scale_factor
# Create rasterizer
rasterizer = PointsRasterizer(cameras=camera, raster_settings=self.raster_settings)
# Associate points with features via rasterization
fragments = rasterizer(Pointclouds(points)) # (B, H, W, R)
fragments_idx: Tensor = fragments.idx.long()
visible_pixels = (fragments_idx > -1) # (B, H, W, R)
points_to_visible_pixels = fragments_idx[visible_pixels]
# Reshape local features to (B, H, W, R, C)
local_features = local_features.permute(0, 2, 3, 1).unsqueeze(-2).expand(-1, -1, -1, R, -1) # (B, H, W, R, C)
# Get local features corresponding to visible points
local_features_proj = torch.zeros(B * N, C, device=device)
# local feature includes: raw RGB color, image features, mask, distance transform
local_features_proj[points_to_visible_pixels] = local_features[visible_pixels]
local_features_proj = local_features_proj.reshape(B, N, C)
return local_features_proj
def point_cloud_to_tensor(self, pc: Pointclouds, /, normalize: bool = False, scale: bool = False):
"""Converts a point cloud to a tensor, with color if and only if self.predict_color"""
points = pc.points_padded() * (self.scale_factor if scale else 1)
if self.predict_color and pc.features_padded() is not None: # normalize color, not point locations
colors = self.normalize(pc.features_padded()) if normalize else pc.features_padded()
return torch.cat((points, colors), dim=2)
else:
return points
def tensor_to_point_cloud(self, x: Tensor, /, denormalize: bool = False, unscale: bool = False):
points = x[:, :, :3] / (self.scale_factor if unscale else 1)
if self.predict_color:
colors = self.denormalize(x[:, :, 3:]) if denormalize else x[:, :, 3:]
return Pointclouds(points=points, features=colors)
else:
assert x.shape[2] == 3
return Pointclouds(points=points)
def get_input_with_conditioning(
self,
x_t: Tensor,
camera: Optional[CamerasBase],
image_rgb: Optional[Tensor],
mask: Optional[Tensor],
t: Optional[Tensor],
):
""" Extracts local features from the input image and projects them onto the points
in the point cloud to obtain the input to the model. Then extracts global
features, replicates them across points, and concats them to the input.
image_rgb: masked background
XH: why there is no positional encoding as described by the supp??
"""
B, N = x_t.shape[:2]
# Initial input is the point locations (and colors if and only if predicting color)
x_t_input = self.get_coord_feature(x_t)
# Local conditioning
if self.use_local_conditioning:
# Get local features and check that they are the same size as the input image
local_features = self.get_local_conditioning(image_rgb=image_rgb, mask=mask) # concatenate RGB + mask + RGB feature + distance transform
if local_features.shape[-2:] != image_rgb.shape[-2:]:
raise ValueError(f'{local_features.shape=} and {image_rgb.shape=}')
# Project local features. Here that we only need the point locations, not colors
local_features_proj = self.surface_projection(points=x_t[:, :, :3],
camera=camera, local_features=local_features) # (B, N, D_local)
x_t_input.append(local_features_proj)
# Global conditioning
if self.use_global_conditioning: # False
# Get and repeat global features
global_features = self.get_global_conditioning(image_rgb=image_rgb) # (B, D_global)
global_features = global_features.unsqueeze(1).expand(-1, N, -1) # (B, D_global, N)
x_t_input.append(global_features)
# Concatenate together all the pointwise features
x_t_input = torch.cat(x_t_input, dim=2) # (B, N, D)
return x_t_input
def get_coord_feature(self, x_t):
"""get coordinate feature, for model that uses separate model to predict binary, we use first 3 channels only"""
x_t_input = [x_t]
return x_t_input
def forward(self, batch: FrameData, mode: str = 'train', **kwargs):
""" The forward method may be defined differently for different models. """
raise NotImplementedError()
|