File size: 14,742 Bytes
9a13ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa2d6d6
9a13ef7
 
 
 
 
fa2d6d6
 
9a13ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa2d6d6
 
 
 
 
 
 
 
 
 
9a13ef7
 
 
 
 
 
fa2d6d6
9a13ef7
 
 
fa2d6d6
 
9a13ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89b7eb9
 
 
9a13ef7
 
89b7eb9
 
9a13ef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import logging
import json
import time
import asyncio
import os
import traceback
import sys
from contextlib import asynccontextmanager
import random

import uvicorn
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from google import genai
from google.genai import types
from typing import Optional, List, Dict, Any

# 简化日志配置
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s [%(levelname)s]: %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)


# 模型配置
GEMINI_MODELS = {
    "gemini-2.0-flash-exp": "gemini-2.0-flash-exp",
    "gemini-2.5-flash-preview-05-20": "gemini-2.5-flash-preview-05-20",
    "gemini-2.5-flash": "gemini-2.5-flash",
    "gemini-2.5-flash-preview-04-17": "gemini-2.5-flash-preview-04-17",
    "gemini-2.5-pro": "gemini-2.5-pro"
}

# 支持的模型列表
SUPPORTED_MODELS = [
    {
        "id": "gemini-2.5-flash-preview-05-20",
        "object": "model",
        "created": int(time.time()),
        "owned_by": "google",
        "permission": [],
        "root": "gemini-2.5-flash-preview-05-20",
        "parent": None,
        "description": "Gemini 2.5 Flash Preview - 最新实验性模型"
    },
    {
        "id": "gemini-2.5-flash-preview-04-17",
        "object": "model",
        "created": int(time.time()),
        "owned_by": "google",
        "permission": [],
        "root": "gemini-2.5-flash-preview-04-17",
        "parent": None,
        "description": "gemini-2.5-flash-preview-04-17- 经典专业模型"
    },
    {
        "id": "gemini-2.5-flash",
        "object": "model",
        "created": int(time.time()),
        "owned_by": "google",
        "permission": [],
        "root": "gemini-2.5-flash",
        "parent": None,
        "description": "gemini-2.5-flash稳定经典专业模型"
    },
       {
        "id": "gemini-2.5-pro",
        "object": "model",
        "created": int(time.time()),
        "owned_by": "google",
        "permission": [],
        "root": "gemini-2.5-pro",
        "parent": None,
        "description": "gemini-2.5-pro稳定经典专业模型"
    }
]


def get_model_name(requested_model: str) -> str:
    """获取实际的Gemini模型名称"""
    print(f"实际模型名称:{GEMINI_MODELS.get(requested_model)}")
    return GEMINI_MODELS.get(requested_model, "gemini-2.5-flash")




def convert_messages(messages):
    content_parts = []
    system_instruction = None

    for message in messages:
        role = message.get("role", "user")
        content = message.get("content", "")

        if role == "system":
            system_instruction = content
        elif role == "assistant":
            content_parts.append({
                "role": "model",
                "parts": [{"text": content}]
            })
        elif role == "user":
            content_parts.append({
                "role": "user",
                "parts": [{"text": content}]
            })

    return content_parts, system_instruction


def handle_error(error):
    """简化的错误处理"""
    error_str = str(error).lower()

    if "prompt_feedback" in error_str:
        if "other" in error_str:
            return "您的输入内容可能过长或触发了安全策略。请尝试缩短您的问题。", "length"
        elif "safety" in error_str:
            return "您的请求被安全策略阻止。请尝试修改您的问题。", "content_filter"
    elif "safety" in error_str:
        return "您的请求被安全策略过滤。请尝试修改您的问题。", "content_filter"

    return "生成内容时遇到错误。请稍后重试。", "stop"


@asynccontextmanager
async def lifespan(app: FastAPI):
    try:
        setup_gemini()  # 测试API密钥是否有效
        logger.info("应用启动完成")
        yield
    except Exception as e:
        logger.error(f"应用启动失败: {str(e)}")
        raise
    finally:
        logger.info("应用关闭")


# 创建FastAPI应用实例
app = FastAPI(
    lifespan=lifespan,
    title="Gemini Official API (ap2)",
    version="1.3.0"
)

# 添加CORS中间件
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)




# API密钥列表 (已更新为您提供的新密钥)
API_KEYS = [
    'AIzaSyA4cFMyM6Mry9hp7Aser3ASyEEzUFfLvNM',
    'AIzaSyCcu6mKtAv1gQlDXnelvViezBQSf3ntJqc'
]


def get_random_api_key():
    """获取随机API密钥"""
    return random.choice(API_KEYS)


def setup_gemini(api_key=None):
    """配置Gemini API"""
    if not api_key:
        api_key = get_random_api_key()

    if not API_KEYS:
        logger.error("请设置有效的API密钥列表")
        raise ValueError("API_KEYS未设置")

    client = genai.Client(api_key=api_key)
    return client, api_key


# 配置安全设置
SAFETY_SETTINGS = [
    types.SafetySetting(
        category=types.HarmCategory.HARM_CATEGORY_HARASSMENT,
        threshold=types.HarmBlockThreshold.BLOCK_NONE,
    ),
    types.SafetySetting(
        category=types.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
        threshold=types.HarmBlockThreshold.BLOCK_NONE,
    ),
    types.SafetySetting(
        category=types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
        threshold=types.HarmBlockThreshold.BLOCK_NONE,
    ),
    types.SafetySetting(
        category=types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
        threshold=types.HarmBlockThreshold.BLOCK_NONE,
    ),
    types.SafetySetting(
        category=types.HarmCategory.HARM_CATEGORY_CIVIC_INTEGRITY,
        threshold=types.HarmBlockThreshold.BLOCK_NONE,
    ),
]


async def try_generate_content(model_name, content_parts, config, max_retries=3):
    """带重试机制的内容生成"""
    last_error = None
    used_keys = set()

    for attempt in range(max_retries):
        try:
            available_keys = [key for key in API_KEYS if key not in used_keys]
            if not available_keys:
                used_keys.clear()
                available_keys = API_KEYS

            api_key = random.choice(available_keys)
            used_keys.add(api_key)

            client, current_key = setup_gemini(api_key)
            logger.info(f"尝试第 {attempt + 1} 次,使用密钥: {current_key[:20]}...")

            response = client.models.generate_content(
                model=model_name,
                contents=content_parts,
                config=config
            )

            return response, current_key

        except Exception as e:
            last_error = e
            error_str = str(e).lower()

            if any(code in error_str for code in ['400', '401', '403', '429', '500', '502', '503', '504']):
                logger.warning(f"第 {attempt + 1} 次尝试失败: {str(e)}")
                if attempt < max_retries - 1:
                    await asyncio.sleep(1)
                    continue
            else:
                raise e

    raise last_error


@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
    """聊天对话接口"""
    try:
        body = await request.json()
        messages = body.get('messages', [])
        stream = body.get('stream', False)
        max_tokens = body.get('max_tokens', 65536)
        temperature = body.get('temperature', 1.2)
        top_p = body.get('top_p', 0.0)
        requested_model = body.get('model', 'gemini-2.5-flash')

        model_name = get_model_name(requested_model)
        content_parts, system_instruction = convert_messages(messages)

        config = types.GenerateContentConfig(
            max_output_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            system_instruction=system_instruction,
            safety_settings=SAFETY_SETTINGS,
        )

        if stream:
            client, api_key = setup_gemini()
            return StreamingResponse(
                stream_response_with_retry(client, model_name, content_parts, config),
                media_type='text/event-stream'
            )
        else:
            response, used_key = await try_generate_content(model_name, content_parts, config)
            response_text = response.text if response else ""
            finish_reason = "stop"
            if not response_text:
                response_text = "无法生成回复。请尝试修改您的问题。"

            logger.info(f"成功生成回复,使用密钥: {used_key[:20]}...")
            return {
                'id': f'chatcmpl-{int(time.time())}-{random.randint(1000, 9999)}',
                'object': 'chat.completion',
                'created': int(time.time()),
                'model': requested_model,
                'choices': [{'index': 0, 'message': {'role': 'assistant', 'content': response_text}, 'finish_reason': finish_reason}],
                'usage': {'prompt_tokens': len(content_parts), 'completion_tokens': len(response_text.split()), 'total_tokens': len(content_parts) + len(response_text.split())}
            }
    except Exception as e:
        logger.error(f"处理聊天请求出错: {str(e)}")
        error_message, finish_reason = handle_error(e)
        raise HTTPException(status_code=500, detail=str(e))


async def stream_response_with_retry(client, model_name, content_parts, config, max_retries=3):
    """带重试机制的流式响应生成器"""
    last_error = None
    used_keys = set()
    for attempt in range(max_retries):
        try:
            available_keys = [key for key in API_KEYS if key not in used_keys]
            if not available_keys:
                used_keys.clear()
                available_keys = API_KEYS
            api_key = random.choice(available_keys)
            used_keys.add(api_key)

            current_client, current_key = setup_gemini(api_key)
            logger.info(f"流式响应尝试第 {attempt + 1} 次,使用密钥: {current_key[:20]}...")

            for chunk in current_client.models.generate_content_stream(model=model_name, contents=content_parts, config=config):
                if chunk and hasattr(chunk, 'text') and chunk.text:
                    data = {'id': f'chatcmpl-{int(time.time())}-{random.randint(1000, 9999)}', 'object': 'chat.completion.chunk', 'created': int(time.time()), 'model': model_name, 'choices': [{'index': 0, 'delta': {'role': 'assistant', 'content': chunk.text}, 'finish_reason': None}]}
                    yield f'data: {json.dumps(data, ensure_ascii=False)}\n\n'
                    await asyncio.sleep(0.01)

            final_data = {'id': f'chatcmpl-{int(time.time())}-{random.randint(1000, 9999)}', 'object': 'chat.completion.chunk', 'created': int(time.time()), 'model': model_name, 'choices': [{'index': 0, 'delta': {}, 'finish_reason': 'stop'}]}
            yield f'data: {json.dumps(final_data, ensure_ascii=False)}\n\n'
            yield 'data: [DONE]\n\n'

            logger.info(f"流式响应成功,使用密钥: {current_key[:20]}...")
            return
        except Exception as e:
            last_error = e
            error_str = str(e).lower()
            if any(code in error_str for code in ['400', '401', '403', '429', '500', '502', '503', '504']):
                logger.warning(f"流式响应第 {attempt + 1} 次尝试失败: {str(e)}")
                if attempt < max_retries - 1:
                    await asyncio.sleep(1)
                    continue
            else:
                break
    logger.error(f"流式响应所有重试失败: {str(last_error)}")
    error_message, finish_reason = handle_error(last_error)
    error_data = {'id': f'chatcmpl-{int(time.time())}-error', 'object': 'chat.completion.chunk', 'created': int(time.time()), 'model': model_name, 'choices': [{'index': 0, 'delta': {'role': 'assistant', 'content': error_message}, 'finish_reason': finish_reason}]}
    yield f'data: {json.dumps(error_data, ensure_ascii=False)}\n\n'
    yield 'data: [DONE]\n\n'

@app.get("/v1/models")
async def list_models():
    """获取可用模型列表"""
    try:
        return {"object": "list", "data": SUPPORTED_MODELS}
    except Exception as e:
        logger.error(f"获取模型列表出错: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/v1/models/{model_id}")
async def get_model_info(model_id: str):
    """获取特定模型信息"""
    try:
        for model in SUPPORTED_MODELS:
            if model["id"] == model_id:
                return model
        raise HTTPException(status_code=404, detail=f"模型 {model_id} 未找到")
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"获取模型信息出错: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/v1/chat/completions/v1/models")
async def list_models_alternative():
    """获取可用模型列表 - 兼容路径"""
    try:
        return {"object": "list", "data": SUPPORTED_MODELS}
    except Exception as e:
        logger.error(f"获取模型列表出错: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    """健康检查端点"""
    try:
        return {"status": "healthy", "timestamp": int(time.time()), "api": "gemini-official", "available_models": [model["id"] for model in SUPPORTED_MODELS], "version": "1.3.0"}
    except Exception as e:
        logger.error(f"健康检查失败: {str(e)}")
        return {"status": "unhealthy", "timestamp": int(time.time()), "error": str(e)}

@app.get("/")
async def root():
    """根路径信息"""
    return {"name": "Gemini Official API (ap2)", "version": "1.3.0", "description": "Google Gemini官方API接口服务", "endpoints": {"models": "/v1/models", "models_alt": "/v1/chat/completions/v1/models", "chat": "/v1/chat/completions", "health": "/health"}}

@app.exception_handler(404)
async def not_found_handler(request: Request, exc: HTTPException):
    """处理404错误"""
    return {"error": "未找到", "requested_path": str(request.url.path), "message": "请求的路径不存在", "available_endpoints": {"models": "/v1/models", "models_alt": "/v1/chat/completions/v1/models", "chat": "/v1/chat/completions", "health": "/health", "info": "/"}}

if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7861))
    print(f"🚀 启动Gemini官方API服务器于端口 {port}")
    print(f"📊 支持的模型: {[model['id'] for model in SUPPORTED_MODELS]}")
    print(f"🔑 已配置 {len(API_KEYS)} 个API密钥")
    print("🔄 支持自动重试和密钥轮换")
    uvicorn.run(app, host="0.0.0.0", port=port)