File size: 8,356 Bytes
3dac99f
 
 
e89b19f
be4e089
 
 
 
e89b19f
3dac99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13928bb
3dac99f
 
 
 
be4e089
3dac99f
 
 
 
 
 
 
13fb3dd
3dac99f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os 
import sys

os.system("python frozenseg/modeling/pixel_decoder/ops/setup.py build install")
os.system("pip install imutils")
os.system("pip install gradio_client==0.2.7")
os.system("python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'")
os.system("pip install git+https://github.com/cocodataset/panopticapi.git")


import gradio as gr
from detectron2.utils.logger import setup_logger
from contextlib import ExitStack
import numpy as np
import cv2
import torch
import itertools
from detectron2.config import get_cfg
from detectron2.utils.visualizer import ColorMode, random_color
from detectron2.data import MetadataCatalog

from frozenseg import add_maskformer2_config, add_frozenseg_config
from demo.predictor import DefaultPredictor, OpenVocabVisualizer
from PIL import Image
import json

setup_logger()
logger = setup_logger(name="frozenseg")
cfg = get_cfg()
cfg.MODEL.DEVICE='cpu'
add_maskformer2_config(cfg)
add_frozenseg_config(cfg)
cfg.merge_from_file("configs/coco/frozenseg/convnext_large_eval_ade20k.yaml")
# os.system("gdown 1-91PIns86vyNaL3CzMmDD39zKGnPMtvj")
cfg.MODEL.WEIGHTS = './frozenseg_ConvNeXt-Large.pth'
cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON = False
cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON = False
cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON = True
predictor = DefaultPredictor(cfg)


title = "FrozenSeg"
article = "<p style='text-align: center'><a href='https://www.arxiv.org/abs/2409.03525' target='_blank'>FrozenSeg</a> | <a href='https://github.com/chenxi52/FrozenSeg' target='_blank'>Github Repo</a></p>"

examples = [
    [
        "demo/examples/ADE_val_00000001.jpg",
        "",
        ["ADE (150 categories)"],
    ],
    [
        "demo/examples/frankfurt_000000_005898_leftImg8bit.png",
        "",
        ["Cityscapes (19 categories)"],
    ]
]


coco_metadata = MetadataCatalog.get("openvocab_coco_2017_val_panoptic_with_sem_seg")
ade20k_metadata = MetadataCatalog.get("openvocab_ade20k_panoptic_val")
cityscapes_metadata = MetadataCatalog.get("openvocab_cityscapes_fine_panoptic_val")
lvis_classes = open("./frozenseg/data/datasets/lvis_1203_with_prompt_eng.txt", 'r').read().splitlines()
lvis_classes = [x[x.find(':')+1:] for x in lvis_classes]
lvis_colors = list(
    itertools.islice(itertools.cycle(coco_metadata.stuff_colors), len(lvis_classes))
)
# rerrange to thing_classes, stuff_classes
coco_thing_classes = coco_metadata.thing_classes
coco_stuff_classes = [x for x in coco_metadata.stuff_classes if x not in coco_thing_classes]
coco_thing_colors = coco_metadata.thing_colors
coco_stuff_colors = [x for x in coco_metadata.stuff_colors if x not in coco_thing_colors]
ade20k_thing_classes = ade20k_metadata.thing_classes
ade20k_stuff_classes = [x for x in ade20k_metadata.stuff_classes if x not in ade20k_thing_classes]
ade20k_thing_colors = ade20k_metadata.thing_colors
ade20k_stuff_colors = [x for x in ade20k_metadata.stuff_colors if x not in ade20k_thing_colors]
cityscapes_stuff_classes = cityscapes_metadata.stuff_classes
cityscapes_stuff_color = cityscapes_metadata.stuff_colors
cityscapes_thing_classes = cityscapes_metadata.thing_classes
cityscapes_thing_color = cityscapes_metadata.thing_colors

def build_demo_classes_and_metadata(vocab, label_list):
    extra_classes = []

    if vocab:
        for words in vocab.split(";"):
            extra_classes.append(words)
    extra_colors = [random_color(rgb=True, maximum=1) for _ in range(len(extra_classes))]
    print("extra_classes:", extra_classes)
    demo_thing_classes = extra_classes
    demo_stuff_classes = []
    demo_thing_colors = extra_colors
    demo_stuff_colors = []

    if any("COCO" in label for label in label_list):
        demo_thing_classes += coco_thing_classes
        demo_stuff_classes += coco_stuff_classes
        demo_thing_colors += coco_thing_colors
        demo_stuff_colors += coco_stuff_colors
    if any("ADE" in label for label in label_list):
        demo_thing_classes += ade20k_thing_classes
        demo_stuff_classes += ade20k_stuff_classes
        demo_thing_colors += ade20k_thing_colors
        demo_stuff_colors += ade20k_stuff_colors
    if any("LVIS" in label for label in label_list):
        demo_thing_classes += lvis_classes
        demo_thing_colors += lvis_colors
    if any("Cityscapes" in label for label in label_list):
        demo_thing_classes += cityscapes_thing_classes
        demo_thing_colors += cityscapes_thing_color
        demo_stuff_classes += cityscapes_stuff_classes
        demo_stuff_colors += cityscapes_stuff_color
    

    MetadataCatalog.pop("frozenseg_demo_metadata", None)
    demo_metadata = MetadataCatalog.get("frozenseg_demo_metadata")
    demo_metadata.thing_classes = demo_thing_classes
    demo_metadata.stuff_classes = demo_thing_classes + demo_stuff_classes
    demo_metadata.thing_colors = demo_thing_colors
    demo_metadata.stuff_colors = demo_thing_colors + demo_stuff_colors
    demo_metadata.stuff_dataset_id_to_contiguous_id = {
        idx: idx for idx in range(len(demo_metadata.stuff_classes))
    }
    demo_metadata.thing_dataset_id_to_contiguous_id = {
        idx: idx for idx in range(len(demo_metadata.thing_classes))
    }
    demo_classes = demo_thing_classes + demo_stuff_classes
    return demo_classes, demo_metadata


def inference(image_path, vocab, label_list):
    logger.info("building class names")
    vocab = vocab.replace(", ", ",").replace("; ", ";")
    demo_classes, demo_metadata = build_demo_classes_and_metadata(vocab, label_list)
    predictor.set_metadata(demo_metadata)
    im = cv2.imread(image_path)
    outputs = predictor(im)
    v = OpenVocabVisualizer(im[:, :, ::-1], demo_metadata, instance_mode=ColorMode.IMAGE)
    panoptic_result = v.draw_panoptic_seg(outputs["panoptic_seg"][0].to("cpu"), outputs["panoptic_seg"][1]).get_image()
    return Image.fromarray(np.uint8(panoptic_result)).convert('RGB')

    
with gr.Blocks(title=title,
                css="""
               #submit {background: #3498db; color: white; border: none; padding: 10px 20px; border-radius: 5px;width: 20%;margin: 0 auto; display: block;}
                """
            ) as demo:
    gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" + title + "</h1>")
    input_components = []
    output_components = []

    with gr.Row():
        output_image_gr = gr.Image(label="Panoptic Segmentation Output", type="pil")
        output_components.append(output_image_gr)

    with gr.Row().style(equal_height=True):
        with gr.Column(scale=3, variant="panel") as input_component_column:
            input_image_gr = gr.Image(type="filepath", label="Input Image")
            extra_vocab_gr = gr.Textbox(label="Extra Vocabulary (separated by ;)", placeholder="house;sky")
            category_list_gr = gr.CheckboxGroup(
                choices=["COCO (133 categories)", "ADE (150 categories)", "LVIS (1203 categories)", "Cityscapes (19 categories)"],
                label="Category to use",
            )
            input_components.extend([input_image_gr, extra_vocab_gr, category_list_gr])

        with gr.Column(scale=2):
            examples_handler = gr.Examples(
                examples=examples,
                inputs=[c for c in input_components if not isinstance(c, gr.State)],
                outputs=[c for c in output_components if not isinstance(c, gr.State)],
                fn=inference,
                cache_examples=torch.cuda.is_available(),
                examples_per_page=5,
            )
            with gr.Row():
                clear_btn = gr.Button("Clear")
                submit_btn = gr.Button("Submit", variant="primary")

    gr.Markdown(article)

    submit_btn.click(
        inference,
        input_components,
        output_components,
        api_name="predict",
        scroll_to_output=True,
    )

    clear_btn.click(
        None,
        [],
        (input_components + output_components + [input_component_column]),
        _js=f"""() => {json.dumps(
                    [component.cleared_value if hasattr(component, "cleared_value") else None
                     for component in input_components + output_components] + (
                        [gr.Column.update(visible=True)]
                    )
                    + ([gr.Column.update(visible=False)])
                )}
                """,
    )

demo.launch(server_port=7881)