Spaces:
Sleeping
Sleeping
File size: 12,150 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
# -*- coding: utf-8 -*-
# Helpful functions Pipeline
#
# Adapted from HoverNet
# HoverNet Network (https://doi.org/10.1016/j.media.2019.101563)
# Code Snippet adapted from HoverNet implementation (https://github.com/vqdang/hover_net)
#
# @ Fabian Hörst, fabian.hoerst@uk-essen.de
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import math
from typing import Tuple
import numpy as np
import scipy
from numba import njit, prange
from scipy import ndimage
from scipy.optimize import linear_sum_assignment
from skimage.draw import polygon
def get_bounding_box(img):
"""Get bounding box coordinate information."""
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
# due to python indexing, need to add 1 to max
# else accessing will be 1px in the box, not out
rmax += 1
cmax += 1
return [rmin, rmax, cmin, cmax]
@njit
def cropping_center(x, crop_shape, batch=False):
"""Crop an input image at the centre.
Args:
x: input array
crop_shape: dimensions of cropped array
Returns:
x: cropped array
"""
orig_shape = x.shape
if not batch:
h0 = int((orig_shape[0] - crop_shape[0]) * 0.5)
w0 = int((orig_shape[1] - crop_shape[1]) * 0.5)
x = x[h0 : h0 + crop_shape[0], w0 : w0 + crop_shape[1], ...]
else:
h0 = int((orig_shape[1] - crop_shape[0]) * 0.5)
w0 = int((orig_shape[2] - crop_shape[1]) * 0.5)
x = x[:, h0 : h0 + crop_shape[0], w0 : w0 + crop_shape[1], ...]
return x
def remove_small_objects(pred, min_size=64, connectivity=1):
"""Remove connected components smaller than the specified size.
This function is taken from skimage.morphology.remove_small_objects, but the warning
is removed when a single label is provided.
Args:
pred: input labelled array
min_size: minimum size of instance in output array
connectivity: The connectivity defining the neighborhood of a pixel.
Returns:
out: output array with instances removed under min_size
"""
out = pred
if min_size == 0: # shortcut for efficiency
return out
if out.dtype == bool:
selem = ndimage.generate_binary_structure(pred.ndim, connectivity)
ccs = np.zeros_like(pred, dtype=np.int32)
ndimage.label(pred, selem, output=ccs)
else:
ccs = out
try:
component_sizes = np.bincount(ccs.ravel())
except ValueError:
raise ValueError(
"Negative value labels are not supported. Try "
"relabeling the input with `scipy.ndimage.label` or "
"`skimage.morphology.label`."
)
too_small = component_sizes < min_size
too_small_mask = too_small[ccs]
out[too_small_mask] = 0
return out
def pair_coordinates(
setA: np.ndarray, setB: np.ndarray, radius: float
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""Use the Munkres or Kuhn-Munkres algorithm to find the most optimal
unique pairing (largest possible match) when pairing points in set B
against points in set A, using distance as cost function.
Args:
setA (np.ndarray): np.array (float32) of size Nx2 contains the of XY coordinate
of N different points
setB (np.ndarray): np.array (float32) of size Nx2 contains the of XY coordinate
of N different points
radius (float): valid area around a point in setA to consider
a given coordinate in setB a candidate for match
Returns:
Tuple[np.ndarray, np.ndarray, np.ndarray]:
pairing: pairing is an array of indices
where point at index pairing[0] in set A paired with point
in set B at index pairing[1]
unparedA: remaining point in set A unpaired
unparedB: remaining point in set B unpaired
"""
# * Euclidean distance as the cost matrix
pair_distance = scipy.spatial.distance.cdist(setA, setB, metric="euclidean")
# * Munkres pairing with scipy library
# the algorithm return (row indices, matched column indices)
# if there is multiple same cost in a row, index of first occurence
# is return, thus the unique pairing is ensured
indicesA, paired_indicesB = linear_sum_assignment(pair_distance)
# extract the paired cost and remove instances
# outside of designated radius
pair_cost = pair_distance[indicesA, paired_indicesB]
pairedA = indicesA[pair_cost <= radius]
pairedB = paired_indicesB[pair_cost <= radius]
pairing = np.concatenate([pairedA[:, None], pairedB[:, None]], axis=-1)
unpairedA = np.delete(np.arange(setA.shape[0]), pairedA)
unpairedB = np.delete(np.arange(setB.shape[0]), pairedB)
return pairing, unpairedA, unpairedB
def fix_duplicates(inst_map: np.ndarray) -> np.ndarray:
"""Re-label duplicated instances in an instance labelled mask.
Parameters
----------
inst_map : np.ndarray
Instance labelled mask. Shape (H, W).
Returns
-------
np.ndarray:
The instance labelled mask without duplicated indices.
Shape (H, W).
"""
current_max_id = np.amax(inst_map)
inst_list = list(np.unique(inst_map))
if 0 in inst_list:
inst_list.remove(0)
for inst_id in inst_list:
inst = np.array(inst_map == inst_id, np.uint8)
remapped_ids = ndimage.label(inst)[0]
remapped_ids[remapped_ids > 1] += current_max_id
inst_map[remapped_ids > 1] = remapped_ids[remapped_ids > 1]
current_max_id = np.amax(inst_map)
return inst_map
def polygons_to_label_coord(
coord: np.ndarray, shape: Tuple[int, int], labels: np.ndarray = None
) -> np.ndarray:
"""Render polygons to image given a shape.
Parameters
----------
coord.shape : np.ndarray
Shape: (n_polys, n_rays)
shape : Tuple[int, int]
Shape of the output mask.
labels : np.ndarray, optional
Sorted indices of the centroids.
Returns
-------
np.ndarray:
Instance labelled mask. Shape: (H, W).
"""
coord = np.asarray(coord)
if labels is None:
labels = np.arange(len(coord))
assert coord.ndim == 3 and coord.shape[1] == 2 and len(coord) == len(labels)
lbl = np.zeros(shape, np.int32)
for i, c in zip(labels, coord):
rr, cc = polygon(*c, shape)
lbl[rr, cc] = i + 1
return lbl
def ray_angles(n_rays: int = 32):
"""Get linearly spaced angles for rays."""
return np.linspace(0, 2 * np.pi, n_rays, endpoint=False)
def dist_to_coord(
dist: np.ndarray, points: np.ndarray, scale_dist: Tuple[int, int] = (1, 1)
) -> np.ndarray:
"""Convert list of distances and centroids from polar to cartesian coordinates.
Parameters
----------
dist : np.ndarray
The centerpoint pixels of the radial distance map. Shape (n_polys, n_rays).
points : np.ndarray
The centroids of the instances. Shape: (n_polys, 2).
scale_dist : Tuple[int, int], default=(1, 1)
Scaling factor.
Returns
-------
np.ndarray:
Cartesian cooridnates of the polygons. Shape (n_polys, 2, n_rays).
"""
dist = np.asarray(dist)
points = np.asarray(points)
assert (
dist.ndim == 2
and points.ndim == 2
and len(dist) == len(points)
and points.shape[1] == 2
and len(scale_dist) == 2
)
n_rays = dist.shape[1]
phis = ray_angles(n_rays)
coord = (dist[:, np.newaxis] * np.array([np.sin(phis), np.cos(phis)])).astype(
np.float32
)
coord *= np.asarray(scale_dist).reshape(1, 2, 1)
coord += points[..., np.newaxis]
return coord
def polygons_to_label(
dist: np.ndarray,
points: np.ndarray,
shape: Tuple[int, int],
prob: np.ndarray = None,
thresh: float = -np.inf,
scale_dist: Tuple[int, int] = (1, 1),
) -> np.ndarray:
"""Convert distances and center points to instance labelled mask.
Parameters
----------
dist : np.ndarray
The centerpoint pixels of the radial distance map. Shape (n_polys, n_rays).
points : np.ndarray
The centroids of the instances. Shape: (n_polys, 2).
shape : Tuple[int, int]:
Shape of the output mask.
prob : np.ndarray, optional
The centerpoint pixels of the regressed distance transform.
Shape: (n_polys, n_rays).
thresh : float, default=-np.inf
Threshold for the regressed distance transform.
scale_dist : Tuple[int, int], default=(1, 1)
Scaling factor.
Returns
-------
np.ndarray:
Instance labelled mask. Shape (H, W).
"""
dist = np.asarray(dist)
points = np.asarray(points)
prob = np.inf * np.ones(len(points)) if prob is None else np.asarray(prob)
assert dist.ndim == 2 and points.ndim == 2 and len(dist) == len(points)
assert len(points) == len(prob) and points.shape[1] == 2 and prob.ndim == 1
ind = prob > thresh
points = points[ind]
dist = dist[ind]
prob = prob[ind]
ind = np.argsort(prob, kind="stable")
points = points[ind]
dist = dist[ind]
coord = dist_to_coord(dist, points, scale_dist=scale_dist)
return polygons_to_label_coord(coord, shape=shape, labels=ind)
@njit(cache=True, fastmath=True)
def intersection(boxA: np.ndarray, boxB: np.ndarray):
"""Compute area of intersection of two boxes.
Parameters
----------
boxA : np.ndarray
First boxes
boxB : np.ndarray
Second box
Returns
-------
float64:
Area of intersection
"""
xA = max(boxA[..., 0], boxB[..., 0])
xB = min(boxA[..., 2], boxB[..., 2])
dx = xB - xA
if dx <= 0:
return 0.0
yA = max(boxA[..., 1], boxB[..., 1])
yB = min(boxA[..., 3], boxB[..., 3])
dy = yB - yA
if dy <= 0.0:
return 0.0
return dx * dy
@njit(parallel=True)
def get_bboxes(
dist: np.ndarray, points: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, int]:
"""Get bounding boxes from the non-zero pixels of the radial distance maps.
This is basically a translation from the stardist repo cpp code to python
NOTE: jit compiled and parallelized with numba.
Parameters
----------
dist : np.ndarray
The non-zero values of the radial distance maps. Shape: (n_nonzero, n_rays).
points : np.ndarray
The yx-coordinates of the non-zero points. Shape (n_nonzero, 2).
Returns
-------
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, int]:
Returns the x0, y0, x1, y1 bbox coordinates, bbox areas and the maximum
radial distance in the image.
"""
n_polys = dist.shape[0]
n_rays = dist.shape[1]
bbox_x1 = np.zeros(n_polys)
bbox_x2 = np.zeros(n_polys)
bbox_y1 = np.zeros(n_polys)
bbox_y2 = np.zeros(n_polys)
areas = np.zeros(n_polys)
angle_pi = 2 * math.pi / n_rays
max_dist = 0
for i in prange(n_polys):
max_radius_outer = 0
py = points[i, 0]
px = points[i, 1]
for k in range(n_rays):
d = dist[i, k]
y = py + d * np.sin(angle_pi * k)
x = px + d * np.cos(angle_pi * k)
if k == 0:
bbox_x1[i] = x
bbox_x2[i] = x
bbox_y1[i] = y
bbox_y2[i] = y
else:
bbox_x1[i] = min(x, bbox_x1[i])
bbox_x2[i] = max(x, bbox_x2[i])
bbox_y1[i] = min(y, bbox_y1[i])
bbox_y2[i] = max(y, bbox_y2[i])
max_radius_outer = max(d, max_radius_outer)
areas[i] = (bbox_x2[i] - bbox_x1[i]) * (bbox_y2[i] - bbox_y1[i])
max_dist = max(max_dist, max_radius_outer)
return bbox_x1, bbox_y1, bbox_x2, bbox_y2, areas, max_dist
|