Spaces:
Running
Running
File size: 44,023 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 |
# -*- coding: utf-8 -*-
# CellViT Trainer Class
#
# @ Fabian Hörst, fabian.hoerst@uk-essen.de
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import logging
from pathlib import Path
from typing import Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import math
import csv
# import wandb
from matplotlib import pyplot as plt
from skimage.color import rgba2rgb
from sklearn.metrics import accuracy_score
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from torchmetrics.functional import dice
from torchmetrics.functional.classification import binary_jaccard_index
from base_ml.base_early_stopping import EarlyStopping
from base_ml.base_trainer import BaseTrainer
from models.segmentation.cell_segmentation.cellvit import DataclassHVStorage
from cell_segmentation.utils.metrics import get_fast_pq, remap_label
from cell_segmentation.utils.tools import cropping_center
from models.segmentation.cell_segmentation.cellvit import CellViT
from utils.tools import AverageMeter
from timm.utils import ModelEma
from torch.cuda.amp import GradScaler, autocast
class CellViTTrainer(BaseTrainer):
"""CellViT trainer class
Args:
model (CellViT): CellViT model that should be trained
loss_fn_dict (dict): Dictionary with loss functions for each branch with a dictionary of loss functions.
Name of branch as top-level key, followed by a dictionary with loss name, loss fn and weighting factor
Example:
{
"nuclei_binary_map": {"bce": {loss_fn(Callable), weight_factor(float)}, "dice": {loss_fn(Callable), weight_factor(float)}},
"hv_map": {"bce": {loss_fn(Callable), weight_factor(float)}, "dice": {loss_fn(Callable), weight_factor(float)}},
"nuclei_type_map": {"bce": {loss_fn(Callable), weight_factor(float)}, "dice": {loss_fn(Callable), weight_factor(float)}}
"tissue_types": {"ce": {loss_fn(Callable), weight_factor(float)}}
}
Required Keys are:
* nuclei_binary_map
* hv_map
* nuclei_type_map
* tissue types
optimizer (Optimizer): Optimizer
scheduler (_LRScheduler): Learning rate scheduler
device (str): Cuda device to use, e.g., cuda:0.
logger (logging.Logger): Logger module
logdir (Union[Path, str]): Logging directory
num_classes (int): Number of nuclei classes
dataset_config (dict): Dataset configuration. Required Keys are:
* "tissue_types": describing the present tissue types with corresponding integer
* "nuclei_types": describing the present nuclei types with corresponding integer
experiment_config (dict): Configuration of this experiment
early_stopping (EarlyStopping, optional): Early Stopping Class. Defaults to None.
log_images (bool, optional): If images should be logged to WandB. Defaults to False.
magnification (int, optional): Image magnification. Please select either 40 or 20. Defaults to 40.
mixed_precision (bool, optional): If mixed-precision should be used. Defaults to False.
"""
def __init__(
self,
model: CellViT,
loss_fn_dict: dict,
optimizer: Optimizer,
scheduler: _LRScheduler,
device: str,
logger: logging.Logger,
logdir: Union[Path, str],
num_classes: int,
dataset_config: dict,
experiment_config: dict,
early_stopping: EarlyStopping = None,
log_images: bool = False,
magnification: int = 40,
mixed_precision: bool = False,
#model_ema : bool = True,
):
super().__init__(
model=model,
loss_fn=None,
optimizer=optimizer,
scheduler=scheduler,
device=device,
logger=logger,
logdir=logdir,
experiment_config=experiment_config,
early_stopping=early_stopping,
accum_iter=1,
log_images=log_images,
mixed_precision=mixed_precision,
)
self.loss_fn_dict = loss_fn_dict
self.num_classes = num_classes
self.dataset_config = dataset_config
self.tissue_types = dataset_config["tissue_types"]
self.reverse_tissue_types = {v: k for k, v in self.tissue_types.items()}
self.nuclei_types = dataset_config["nuclei_types"]
self.magnification = magnification
#self.model_ema = model_ema
# setup logging objects
self.loss_avg_tracker = {"Total_Loss": AverageMeter("Total_Loss", ":.4f")}
for branch, loss_fns in self.loss_fn_dict.items():
for loss_name in loss_fns:
self.loss_avg_tracker[f"{branch}_{loss_name}"] = AverageMeter(
f"{branch}_{loss_name}", ":.4f"
)
self.batch_avg_tissue_acc = AverageMeter("Batch_avg_tissue_ACC", ":4.f")
def train_epoch(
self, epoch: int, train_dataloader: DataLoader, unfreeze_epoch: int = 50
) -> Tuple[dict, dict]:
"""Training logic for a training epoch
Args:
epoch (int): Current epoch number
train_dataloader (DataLoader): Train dataloader
unfreeze_epoch (int, optional): Epoch to unfreeze layers
Returns:
Tuple[dict, dict]: wandb logging dictionaries
* Scalar metrics
* Image metrics
"""
self.model.train()
if epoch >= unfreeze_epoch:
self.model.unfreeze_encoder()
# if self.model_ema and epoch == 0:
# self.model_ema_instance = ModelEma(
# model=self.model,
# decay=0.9999,
# device='cuda',
# resume=''
# )
binary_dice_scores = []
binary_jaccard_scores = []
tissue_pred = []
tissue_gt = []
train_example_img = None
# reset metrics
self.loss_avg_tracker["Total_Loss"].reset()
for branch, loss_fns in self.loss_fn_dict.items():
for loss_name in loss_fns:
self.loss_avg_tracker[f"{branch}_{loss_name}"].reset()
self.batch_avg_tissue_acc.reset()
# randomly select a batch that should be displayed
if self.log_images:
select_example_image = int(torch.randint(0, len(train_dataloader), (1,)))
else:
select_example_image = None
train_loop = tqdm.tqdm(enumerate(train_dataloader), total=len(train_dataloader))
for batch_idx, batch in train_loop:
return_example_images = batch_idx == select_example_image
batch_metrics, example_img = self.train_step(
batch,
batch_idx,
len(train_dataloader),
return_example_images=return_example_images,
)
if example_img is not None:
train_example_img = example_img
binary_dice_scores = (
binary_dice_scores + batch_metrics["binary_dice_scores"]
)
binary_jaccard_scores = (
binary_jaccard_scores + batch_metrics["binary_jaccard_scores"]
)
tissue_pred.append(batch_metrics["tissue_pred"])
tissue_gt.append(batch_metrics["tissue_gt"])
train_loop.set_postfix(
{
"Loss": np.round(self.loss_avg_tracker["Total_Loss"].avg, 3),
"Dice": np.round(np.nanmean(binary_dice_scores), 3),
"Pred-Acc": np.round(self.batch_avg_tissue_acc.avg, 3),
}
)
# calculate global metrics
binary_dice_scores = np.array(binary_dice_scores)
binary_jaccard_scores = np.array(binary_jaccard_scores)
tissue_detection_accuracy = accuracy_score(
y_true=np.concatenate(tissue_gt), y_pred=np.concatenate(tissue_pred)
)
scalar_metrics = {
"Loss/Train": self.loss_avg_tracker["Total_Loss"].avg,
"Binary-Cell-Dice-Mean/Train": np.nanmean(binary_dice_scores),
"Binary-Cell-Jacard-Mean/Train": np.nanmean(binary_jaccard_scores),
"Tissue-Multiclass-Accuracy/Train": tissue_detection_accuracy,
}
for branch, loss_fns in self.loss_fn_dict.items():
for loss_name in loss_fns:
scalar_metrics[f"{branch}_{loss_name}/Train"] = self.loss_avg_tracker[
f"{branch}_{loss_name}"
].avg
self.logger.info(
f"{'Training epoch stats:' : <25} "
f"Loss: {self.loss_avg_tracker['Total_Loss'].avg:.4f} - "
f"Binary-Cell-Dice: {np.nanmean(binary_dice_scores):.4f} - "
f"Binary-Cell-Jacard: {np.nanmean(binary_jaccard_scores):.4f} - "
f"Tissue-MC-Acc.: {tissue_detection_accuracy:.4f}"
)
image_metrics = {"Example-Predictions/Train": train_example_img}
return scalar_metrics, image_metrics
def train_step(
self,
batch: object,
batch_idx: int,
num_batches: int,
return_example_images: bool,
) -> Tuple[dict, Union[plt.Figure, None]]:
"""Training step
Args:
batch (object): Training batch, consisting of images ([0]), masks ([1]), tissue_types ([2]) and figure filenames ([3])
batch_idx (int): Batch index
num_batches (int): Total number of batches in epoch
return_example_images (bool): If an example preciction image should be returned
Returns:
Tuple[dict, Union[plt.Figure, None]]:
* Batch-Metrics: dictionary with the following keys:
* Example prediction image
"""
# unpack batch
imgs = batch[0].to(self.device) # imgs shape: (batch_size, 3, H, W) (16,3,256,256)
masks = batch[
1
] # dict: keys: "instance_map", [16,256,256],"nuclei_map",[16,256,256], "nuclei_binary_map",[16,256,256], "hv_map"[16,2,256,256]
tissue_types = batch[2] # list[str]
#change
#scaler = GradScaler(init_scale=2.0)
if self.mixed_precision:
with torch.autocast(device_type="cuda", dtype=torch.float16):
#with torch.cuda.amp.autocast(False):
# make predictions
predictions_ = self.model.forward(imgs) #img.shape=(16,3,256,256) model.forward(imgs) 'tissue_types'(16,19),'nuclei_binary_map'(16,2,128,128),'hv_map'(16,2,128,128),'nuclei_type_map'(16,6,128,128)
# reshaping and postprocessing
predictions = self.unpack_predictions(predictions=predictions_)
gt = self.unpack_masks(masks=masks, tissue_types=tissue_types)
# calculate loss
total_loss = self.calculate_loss(predictions, gt)
# if torch.isnan(total_loss):
# print("nan in loss")
#if math.isnan(total_loss.item()):
#print("nan")
# import pdb; pdb.set_trace()
# backward pass
self.scaler.scale(total_loss).backward()
# 阈值剪切梯度
#torch.nn.utils.clip_grad_value_(self.model.parameters(), clip_value=1.0)
# if torch.any(torch.tensor([torch.any(torch.isnan(param.data)) for param in self.model.parameters()])):
# print("nan in model parameters")
if (
((batch_idx + 1) % self.accum_iter == 0)
or ((batch_idx + 1) == num_batches)
or (self.accum_iter == 1)
):
# self.scaler.unscale_(self.optimizer)
# torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.scaler.step(self.optimizer)
self.scaler.update()
# if self.model_ema:
# self.model_ema_instance.update(self.model)
self.optimizer.zero_grad(set_to_none=True)
self.model.zero_grad()
else:
predictions_ = self.model.forward(imgs)
predictions = self.unpack_predictions(predictions=predictions_)
gt = self.unpack_masks(masks=masks, tissue_types=tissue_types)
# calculate loss
total_loss = self.calculate_loss(predictions, gt)
total_loss.backward()
if (
((batch_idx + 1) % self.accum_iter == 0)
or ((batch_idx + 1) == num_batches)
or (self.accum_iter == 1)
):
self.optimizer.step()
# if self.model_ema:
# self.model_ema_instance.update(self.model)
self.optimizer.zero_grad(set_to_none=True)
self.model.zero_grad()
with torch.cuda.device(self.device):
torch.cuda.empty_cache()
batch_metrics = self.calculate_step_metric_train(predictions, gt)
if return_example_images:
return_example_images = self.generate_example_image(
imgs, predictions, gt, num_images=4, num_nuclei_classes=self.num_classes
)
else:
return_example_images = None
return batch_metrics, return_example_images
def validation_epoch(
self, epoch: int, val_dataloader: DataLoader
) -> Tuple[dict, dict, float]:
"""Validation logic for a validation epoch
Args:
epoch (int): Current epoch number
val_dataloader (DataLoader): Validation dataloader
Returns:
Tuple[dict, dict, float]: wandb logging dictionaries
* Scalar metrics
* Image metrics
* Early stopping metric
"""
self.model.eval()
binary_dice_scores = []
binary_jaccard_scores = []
pq_scores = []
cell_type_pq_scores = []
tissue_pred = []
tissue_gt = []
val_example_img = None
# reset metrics
self.loss_avg_tracker["Total_Loss"].reset()
for branch, loss_fns in self.loss_fn_dict.items():
for loss_name in loss_fns:
self.loss_avg_tracker[f"{branch}_{loss_name}"].reset()
self.batch_avg_tissue_acc.reset()
# randomly select a batch that should be displayed
if self.log_images:
select_example_image = int(torch.randint(0, len(val_dataloader), (1,)))
else:
select_example_image = None
val_loop = tqdm.tqdm(enumerate(val_dataloader), total=len(val_dataloader))
with torch.no_grad():
for batch_idx, batch in val_loop:
return_example_images = batch_idx == select_example_image
batch_metrics, example_img= self.validation_step(
batch, batch_idx, return_example_images
)
# 检查总体损失是否为NaN
# if np.isnan(self.loss_avg_tracker["Total_Loss"].avg):
# print("NaN loss for image:", batch_idx)
if example_img is not None:
val_example_img = example_img
binary_dice_scores = (
binary_dice_scores + batch_metrics["binary_dice_scores"]
)
binary_jaccard_scores = (
binary_jaccard_scores + batch_metrics["binary_jaccard_scores"]
)
pq_scores = pq_scores + batch_metrics["pq_scores"]
cell_type_pq_scores = (
cell_type_pq_scores + batch_metrics["cell_type_pq_scores"]
)
tissue_pred.append(batch_metrics["tissue_pred"])
tissue_gt.append(batch_metrics["tissue_gt"])
val_loop.set_postfix(
{
"Loss": np.round(self.loss_avg_tracker["Total_Loss"].avg, 3),
"Dice": np.round(np.nanmean(binary_dice_scores), 3),
"Pred-Acc": np.round(self.batch_avg_tissue_acc.avg, 3),
}
)
tissue_types_val = [
self.reverse_tissue_types[t].lower() for t in np.concatenate(tissue_gt)
]
# calculate global metrics
binary_dice_scores = np.array(binary_dice_scores)
binary_jaccard_scores = np.array(binary_jaccard_scores)
pq_scores = np.array(pq_scores)
tissue_detection_accuracy = accuracy_score(
y_true=np.concatenate(tissue_gt), y_pred=np.concatenate(tissue_pred)
)
scalar_metrics = {
"Loss/Validation": self.loss_avg_tracker["Total_Loss"].avg,
"Binary-Cell-Dice-Mean/Validation": np.nanmean(binary_dice_scores),
"Binary-Cell-Jacard-Mean/Validation": np.nanmean(binary_jaccard_scores),
"Tissue-Multiclass-Accuracy/Validation": tissue_detection_accuracy,
"bPQ/Validation": np.nanmean(pq_scores),
"mPQ/Validation": np.nanmean(
[np.nanmean(pq) for pq in cell_type_pq_scores]
),
}
for branch, loss_fns in self.loss_fn_dict.items():
for loss_name in loss_fns:
scalar_metrics[
f"{branch}_{loss_name}/Validation"
] = self.loss_avg_tracker[f"{branch}_{loss_name}"].avg #这里的loss_avg_tracker是在train_step中定义的
# calculate local metrics
# per tissue class
for tissue in self.tissue_types.keys():
tissue = tissue.lower()
tissue_ids = np.where(np.asarray(tissue_types_val) == tissue)
scalar_metrics[f"{tissue}-Dice/Validation"] = np.nanmean(
binary_dice_scores[tissue_ids]
)
scalar_metrics[f"{tissue}-Jaccard/Validation"] = np.nanmean(
binary_jaccard_scores[tissue_ids]
)
scalar_metrics[f"{tissue}-bPQ/Validation"] = np.nanmean(
pq_scores[tissue_ids]
)
scalar_metrics[f"{tissue}-mPQ/Validation"] = np.nanmean(
[np.nanmean(pq) for pq in np.array(cell_type_pq_scores)[tissue_ids]]
)
# calculate nuclei metrics
for nuc_name, nuc_type in self.nuclei_types.items():
if nuc_name.lower() == "background":
continue
scalar_metrics[f"{nuc_name}-PQ/Validation"] = np.nanmean(
[pq[nuc_type] for pq in cell_type_pq_scores]
)
self.logger.info(
f"{'Validation epoch stats:' : <25} "
f"Loss: {self.loss_avg_tracker['Total_Loss'].avg:.4f} - "
f"Binary-Cell-Dice: {np.nanmean(binary_dice_scores):.4f} - "
f"Binary-Cell-Jacard: {np.nanmean(binary_jaccard_scores):.4f} - "
f"bPQ-Score: {np.nanmean(pq_scores):.4f} - "
f"mPQ-Score: {scalar_metrics['mPQ/Validation']:.4f} - "
f"Tissue-MC-Acc.: {tissue_detection_accuracy:.4f}"
)
image_metrics = {"Example-Predictions/Validation": val_example_img}
return scalar_metrics, image_metrics, np.nanmean(pq_scores)
def validation_step(
self,
batch: object,
batch_idx: int,
return_example_images: bool,
):
"""Validation step
Args:
batch (object): Training batch, consisting of images ([0]), masks ([1]), tissue_types ([2]) and figure filenames ([3])
batch_idx (int): Batch index
return_example_images (bool): If an example preciction image should be returned
Returns:
Tuple[dict, Union[plt.Figure, None]]:
* Batch-Metrics: dictionary, structure not fixed yet
* Example prediction image
"""
# unpack batch, for shape compare train_step method
imgs = batch[0].to(self.device)
masks = batch[1]
tissue_types = batch[2]
# nan_loss_images = []
# csv_file = "/data3/ziweicui/PanNuke/cellvit-png/fold1_nan_loss_images.csv"
self.model.zero_grad()
self.optimizer.zero_grad()
# with open(csv_file, 'a') as f:
# csv_write = csv.writer(f)
if self.mixed_precision:
with torch.autocast(device_type="cuda", dtype=torch.float16):
# make predictions
predictions_ = self.model.forward(imgs)
# reshaping and postprocessing
predictions = self.unpack_predictions(predictions=predictions_)
gt = self.unpack_masks(masks=masks, tissue_types=tissue_types)
# calculate loss
_ = self.calculate_loss(predictions, gt)
# 检查损失是否为NaN
#loss_value = _.item()
# if math.isnan(loss_value):
# print("NaN loss for image:", batch[3])
#nan_loss_images.append(batch[3])
else:
predictions_ = self.model.forward(imgs)
# reshaping and postprocessing
predictions = self.unpack_predictions(predictions=predictions_)
gt = self.unpack_masks(masks=masks, tissue_types=tissue_types)
# calculate loss
_ = self.calculate_loss(predictions, gt)
# 检查损失是否为NaN
loss_value = _.item()
if math.isnan(loss_value):
print("NaN loss for image:", batch[3])
# get metrics for this batch
batch_metrics = self.calculate_step_metric_validation(predictions, gt)
if return_example_images:
try:
return_example_images = self.generate_example_image(
imgs,
predictions,
gt,
num_images=4,
num_nuclei_classes=self.num_classes,
)
except AssertionError:
self.logger.error(
"AssertionError for Example Image. Please check. Continue without image."
)
return_example_images = None
else:
return_example_images = None
return batch_metrics, return_example_images
def unpack_predictions(self, predictions: dict) -> DataclassHVStorage:
"""Unpack the given predictions. Main focus lays on reshaping and postprocessing predictions, e.g. separating instances
Args:
predictions (dict): Dictionary with the following keys:
* tissue_types: Logit tissue prediction output. Shape: (batch_size, num_tissue_classes)
* nuclei_binary_map: Logit output for binary nuclei prediction branch. Shape: (batch_size, 2, H, W)
* hv_map: Logit output for hv-prediction. Shape: (batch_size, 2, H, W)
* nuclei_type_map: Logit output for nuclei instance-prediction. Shape: (batch_size, num_nuclei_classes, H, W)
Returns:
DataclassHVStorage: Processed network output
"""
predictions["tissue_types"] = predictions["tissue_types"].to(self.device)
predictions["nuclei_binary_map"] = F.softmax(
predictions["nuclei_binary_map"], dim=1
) # shape: (batch_size, 2, H, W)
predictions["nuclei_type_map"] = F.softmax(
predictions["nuclei_type_map"], dim=1
) # shape: (batch_size, num_nuclei_classes, H, W)
(
predictions["instance_map"],
predictions["instance_types"],
) = self.model.calculate_instance_map(
predictions, self.magnification
) # shape: (batch_size, H, W)
predictions["instance_types_nuclei"] = self.model.generate_instance_nuclei_map(
predictions["instance_map"], predictions["instance_types"]
).to(
self.device
) # shape: (batch_size, num_nuclei_classes, H, W) (32, 256, 256, 6)
if "regression_map" not in predictions.keys():
predictions["regression_map"] = None
predictions = DataclassHVStorage(
nuclei_binary_map=predictions["nuclei_binary_map"],
hv_map=predictions["hv_map"],
nuclei_type_map=predictions["nuclei_type_map"],
tissue_types=predictions["tissue_types"],
instance_map=predictions["instance_map"],
instance_types=predictions["instance_types"],
instance_types_nuclei=predictions["instance_types_nuclei"],
batch_size=predictions["tissue_types"].shape[0],
regression_map=predictions["regression_map"],
num_nuclei_classes=self.num_classes,
)
return predictions
def unpack_masks(self, masks: dict, tissue_types: list) -> DataclassHVStorage:
"""Unpack the given masks. Main focus lays on reshaping and postprocessing masks to generate one dict
Args:
masks (dict): Required keys are:
* instance_map: Pixel-wise nuclear instance segmentations. Shape: (batch_size, H, W)
* nuclei_binary_map: Binary nuclei segmentations. Shape: (batch_size, H, W)
* hv_map: HV-Map. Shape: (batch_size, 2, H, W)
* nuclei_type_map: Nuclei instance-prediction and segmentation (not binary, each instance has own integer).
Shape: (batch_size, num_nuclei_classes, H, W)
tissue_types (list): List of string names of ground-truth tissue types
Returns:
DataclassHVStorage: GT-Results with matching shapes and output types
"""
# get ground truth values, perform one hot encoding for segmentation maps
gt_nuclei_binary_map_onehot = (
F.one_hot(masks["nuclei_binary_map"], num_classes=2)
).type(
torch.float32
) # background, nuclei
#nuclei_type_maps = torch.squeeze(masks["nuclei_type_map"]).type(torch.int64)
nuclei_type_maps = masks["nuclei_type_map"].type(torch.int64)
gt_nuclei_type_maps_onehot = F.one_hot(
nuclei_type_maps, num_classes=self.num_classes
).type(
torch.float32
) # background + nuclei types
# assemble ground truth dictionary
gt = {
"nuclei_type_map": gt_nuclei_type_maps_onehot.permute(0, 3, 1, 2).to(
self.device
), # shape: (batch_size, H, W, num_nuclei_classes)
"nuclei_binary_map": gt_nuclei_binary_map_onehot.permute(0, 3, 1, 2).to(
self.device
), # shape: (batch_size, H, W, 2)
"hv_map": masks["hv_map"].to(self.device), # shape: (batch_size,2, H, W)
"instance_map": masks["instance_map"].to(
self.device
), # shape: (batch_size, H, W) -> each instance has one integer
"instance_types_nuclei": (
gt_nuclei_type_maps_onehot * masks["instance_map"][..., None]
)
.permute(0, 3, 1, 2)
.to(
self.device
), # shape: (batch_size, num_nuclei_classes, H, W) -> instance has one integer, for each nuclei class
"tissue_types": torch.Tensor([self.tissue_types[t] for t in tissue_types])
.type(torch.LongTensor)
.to(self.device), # shape: batch_size
}
if "regression_map" in masks:
gt["regression_map"] = masks["regression_map"].to(self.device)
gt = DataclassHVStorage(
**gt,
batch_size=gt["tissue_types"].shape[0],
num_nuclei_classes=self.num_classes,
)
return gt
def calculate_loss(
self, predictions: DataclassHVStorage, gt: DataclassHVStorage
) -> torch.Tensor:
"""Calculate the loss
Args:
predictions (DataclassHVStorage): Predictions
gt (DataclassHVStorage): Ground-Truth values
Returns:
torch.Tensor: Loss
"""
predictions = predictions.get_dict()
gt = gt.get_dict()
total_loss = 0
for branch, pred in predictions.items():
if branch in [
"instance_map",
"instance_types",
"instance_types_nuclei",
]:
continue
if branch not in self.loss_fn_dict:
continue
branch_loss_fns = self.loss_fn_dict[branch]
for loss_name, loss_setting in branch_loss_fns.items():
loss_fn = loss_setting["loss_fn"]
weight = loss_setting["weight"]
if loss_name == "msge":
loss_value = loss_fn(
input=pred,
target=gt[branch],
focus=gt["nuclei_binary_map"],
device=self.device,
)
else:
loss_value = loss_fn(input=pred, target=gt[branch])
total_loss = total_loss + weight * loss_value
self.loss_avg_tracker[f"{branch}_{loss_name}"].update(
loss_value.detach().cpu().numpy()
)
self.loss_avg_tracker["Total_Loss"].update(total_loss.detach().cpu().numpy())
return total_loss
def calculate_step_metric_train(
self, predictions: DataclassHVStorage, gt: DataclassHVStorage
) -> dict:
"""Calculate the metrics for the training step
Args:
predictions (DataclassHVStorage): Processed network output
gt (DataclassHVStorage): Ground truth values
Returns:
dict: Dictionary with metrics. Keys:
binary_dice_scores, binary_jaccard_scores, tissue_pred, tissue_gt
"""
predictions = predictions.get_dict()
gt = gt.get_dict()
# Tissue Tpyes logits to probs and argmax to get class
predictions["tissue_types_classes"] = F.softmax(
predictions["tissue_types"], dim=-1
)
pred_tissue = (
torch.argmax(predictions["tissue_types_classes"], dim=-1)
.detach()
.cpu()
.numpy()
.astype(np.uint8)
)
predictions["instance_map"] = predictions["instance_map"].detach().cpu()
predictions["instance_types_nuclei"] = (
predictions["instance_types_nuclei"].detach().cpu().numpy().astype("int32")
)
gt["tissue_types"] = gt["tissue_types"].detach().cpu().numpy().astype(np.uint8)
gt["nuclei_binary_map"] = torch.argmax(gt["nuclei_binary_map"], dim=1).type(
torch.uint8
)
gt["instance_types_nuclei"] = (
gt["instance_types_nuclei"].detach().cpu().numpy().astype("int32")
)
tissue_detection_accuracy = accuracy_score(
y_true=gt["tissue_types"], y_pred=pred_tissue
)
self.batch_avg_tissue_acc.update(tissue_detection_accuracy)
binary_dice_scores = []
binary_jaccard_scores = []
for i in range(len(pred_tissue)):
# binary dice score: Score for cell detection per image, without background
pred_binary_map = torch.argmax(predictions["nuclei_binary_map"][i], dim=0)
target_binary_map = gt["nuclei_binary_map"][i]
cell_dice = (
dice(preds=pred_binary_map, target=target_binary_map, ignore_index=0)
.detach()
.cpu()
)
binary_dice_scores.append(float(cell_dice))
# binary aji
cell_jaccard = (
binary_jaccard_index(
preds=pred_binary_map,
target=target_binary_map,
)
.detach()
.cpu()
)
binary_jaccard_scores.append(float(cell_jaccard))
batch_metrics = {
"binary_dice_scores": binary_dice_scores,
"binary_jaccard_scores": binary_jaccard_scores,
"tissue_pred": pred_tissue,
"tissue_gt": gt["tissue_types"],
}
return batch_metrics
def calculate_step_metric_validation(self, predictions: dict, gt: dict) -> dict:
"""Calculate the metrics for the training step
Args:
predictions (DataclassHVStorage): OrderedDict: Processed network output
gt (DataclassHVStorage): Ground truth values
Returns:
dict: Dictionary with metrics. Keys:
binary_dice_scores, binary_jaccard_scores, tissue_pred, tissue_gt
"""
predictions = predictions.get_dict()
gt = gt.get_dict()
# Tissue Tpyes logits to probs and argmax to get class
predictions["tissue_types_classes"] = F.softmax(
predictions["tissue_types"], dim=-1
)
pred_tissue = (
torch.argmax(predictions["tissue_types_classes"], dim=-1)
.detach()
.cpu()
.numpy()
.astype(np.uint8)
)
predictions["instance_map"] = predictions["instance_map"].detach().cpu()
predictions["instance_types_nuclei"] = (
predictions["instance_types_nuclei"].detach().cpu().numpy().astype("int32")
)
#change
predictions["instance_types_nuclei"] = predictions["instance_types_nuclei"].transpose(0, 3, 1, 2)
instance_maps_gt = gt["instance_map"].detach().cpu()
gt["tissue_types"] = gt["tissue_types"].detach().cpu().numpy().astype(np.uint8)
gt["nuclei_binary_map"] = torch.argmax(gt["nuclei_binary_map"], dim=1).type(
torch.uint8
)
gt["instance_types_nuclei"] = (
gt["instance_types_nuclei"].detach().cpu().numpy().astype("int32")
)
tissue_detection_accuracy = accuracy_score(
y_true=gt["tissue_types"], y_pred=pred_tissue
)
self.batch_avg_tissue_acc.update(tissue_detection_accuracy)
binary_dice_scores = []
binary_jaccard_scores = []
cell_type_pq_scores = []
pq_scores = []
for i in range(len(pred_tissue)):
# binary dice score: Score for cell detection per image, without background
pred_binary_map = torch.argmax(predictions["nuclei_binary_map"][i], dim=0)
target_binary_map = gt["nuclei_binary_map"][i]
cell_dice = (
dice(preds=pred_binary_map, target=target_binary_map, ignore_index=0)
.detach()
.cpu()
)
binary_dice_scores.append(float(cell_dice))
# binary aji
cell_jaccard = (
binary_jaccard_index(
preds=pred_binary_map,
target=target_binary_map,
)
.detach()
.cpu()
)
binary_jaccard_scores.append(float(cell_jaccard))
# pq values
remapped_instance_pred = remap_label(predictions["instance_map"][i])
remapped_gt = remap_label(instance_maps_gt[i])
[_, _, pq], _ = get_fast_pq(true=remapped_gt, pred=remapped_instance_pred)
pq_scores.append(pq)
#pq values per class (skip background)
nuclei_type_pq = []
for j in range(0, self.num_classes):
pred_nuclei_instance_class = remap_label(
predictions["instance_types_nuclei"][i][j, ...]
)
target_nuclei_instance_class = remap_label(
gt["instance_types_nuclei"][i][j, ...]
)
# if ground truth is empty, skip from calculation
if len(np.unique(target_nuclei_instance_class)) == 1:
pq_tmp = np.nan
else:
[_, _, pq_tmp], _ = get_fast_pq(
pred_nuclei_instance_class,
target_nuclei_instance_class,
match_iou=0.5,
)
nuclei_type_pq.append(pq_tmp)
cell_type_pq_scores.append(nuclei_type_pq)
batch_metrics = {
"binary_dice_scores": binary_dice_scores,
"binary_jaccard_scores": binary_jaccard_scores,
"pq_scores": pq_scores,
"cell_type_pq_scores": cell_type_pq_scores,
"tissue_pred": pred_tissue,
"tissue_gt": gt["tissue_types"],
}
return batch_metrics
@staticmethod
def generate_example_image(
imgs: Union[torch.Tensor, np.ndarray],
predictions: DataclassHVStorage,
gt: DataclassHVStorage,
num_nuclei_classes: int,
num_images: int = 2,
) -> plt.Figure:
"""Generate example plot with image, binary_pred, hv-map and instance map from prediction and ground-truth
Args:
imgs (Union[torch.Tensor, np.ndarray]): Images to process, a random number (num_images) is selected from this stack
Shape: (batch_size, 3, H', W')
predictions (DataclassHVStorage): Predictions
gt (DataclassHVStorage): gt
num_nuclei_classes (int): Number of total nuclei classes including background
num_images (int, optional): Number of example patches to display. Defaults to 2.
Returns:
plt.Figure: Figure with example patches
"""
predictions = predictions.get_dict()
gt = gt.get_dict()
assert num_images <= imgs.shape[0]
num_images = 4
predictions["nuclei_binary_map"] = predictions["nuclei_binary_map"].permute(
0, 2, 3, 1
)
predictions["hv_map"] = predictions["hv_map"].permute(0, 2, 3, 1)
predictions["nuclei_type_map"] = predictions["nuclei_type_map"].permute(
0, 2, 3, 1
)
predictions["instance_types_nuclei"] = predictions[
"instance_types_nuclei"
].transpose(0, 2, 3, 1)
gt["hv_map"] = gt["hv_map"].permute(0, 2, 3, 1)
gt["nuclei_type_map"] = gt["nuclei_type_map"].permute(0, 2, 3, 1)
predictions["instance_types_nuclei"] = predictions[
"instance_types_nuclei"
].transpose(0, 2, 3, 1)
h = gt["hv_map"].shape[1]
w = gt["hv_map"].shape[2]
sample_indices = torch.randint(0, imgs.shape[0], (num_images,))
# convert to rgb and crop to selection
sample_images = (
imgs[sample_indices].permute(0, 2, 3, 1).contiguous().cpu().numpy()
) # convert to rgb
sample_images = cropping_center(sample_images, (h, w), True)
# get predictions
pred_sample_binary_map = (
predictions["nuclei_binary_map"][sample_indices, :, :, 1]
.detach()
.cpu()
.numpy()
)
pred_sample_hv_map = (
predictions["hv_map"][sample_indices].detach().cpu().numpy()
)
pred_sample_instance_maps = (
predictions["instance_map"][sample_indices].detach().cpu().numpy()
)
pred_sample_type_maps = (
torch.argmax(predictions["nuclei_type_map"][sample_indices], dim=-1)
.detach()
.cpu()
.numpy()
)
# get ground truth labels
gt_sample_binary_map = (
gt["nuclei_binary_map"][sample_indices].detach().cpu().numpy()
)
gt_sample_hv_map = gt["hv_map"][sample_indices].detach().cpu().numpy()
gt_sample_instance_map = (
gt["instance_map"][sample_indices].detach().cpu().numpy()
)
gt_sample_type_map = (
torch.argmax(gt["nuclei_type_map"][sample_indices], dim=-1)
.detach()
.cpu()
.numpy()
)
# create colormaps
hv_cmap = plt.get_cmap("jet")
binary_cmap = plt.get_cmap("jet")
instance_map = plt.get_cmap("viridis")
# setup plot
fig, axs = plt.subplots(num_images, figsize=(6, 2 * num_images), dpi=150)
for i in range(num_images):
placeholder = np.zeros((2 * h, 6 * w, 3))
# orig image
placeholder[:h, :w, :3] = sample_images[i]
placeholder[h : 2 * h, :w, :3] = sample_images[i]
# binary prediction
placeholder[:h, w : 2 * w, :3] = rgba2rgb(
binary_cmap(gt_sample_binary_map[i] * 255)
)
placeholder[h : 2 * h, w : 2 * w, :3] = rgba2rgb(
binary_cmap(pred_sample_binary_map[i])
) # *255?
# hv maps
placeholder[:h, 2 * w : 3 * w, :3] = rgba2rgb(
hv_cmap((gt_sample_hv_map[i, :, :, 0] + 1) / 2)
)
placeholder[h : 2 * h, 2 * w : 3 * w, :3] = rgba2rgb(
hv_cmap((pred_sample_hv_map[i, :, :, 0] + 1) / 2)
)
placeholder[:h, 3 * w : 4 * w, :3] = rgba2rgb(
hv_cmap((gt_sample_hv_map[i, :, :, 1] + 1) / 2)
)
placeholder[h : 2 * h, 3 * w : 4 * w, :3] = rgba2rgb(
hv_cmap((pred_sample_hv_map[i, :, :, 1] + 1) / 2)
)
# instance_predictions
placeholder[:h, 4 * w : 5 * w, :3] = rgba2rgb(
instance_map(
(gt_sample_instance_map[i] - np.min(gt_sample_instance_map[i]))
/ (
np.max(gt_sample_instance_map[i])
- np.min(gt_sample_instance_map[i] + 1e-10)
)
)
)
placeholder[h : 2 * h, 4 * w : 5 * w, :3] = rgba2rgb(
instance_map(
(
pred_sample_instance_maps[i]
- np.min(pred_sample_instance_maps[i])
)
/ (
np.max(pred_sample_instance_maps[i])
- np.min(pred_sample_instance_maps[i] + 1e-10)
)
)
)
# type_predictions
placeholder[:h, 5 * w : 6 * w, :3] = rgba2rgb(
binary_cmap(gt_sample_type_map[i] / num_nuclei_classes)
)
placeholder[h : 2 * h, 5 * w : 6 * w, :3] = rgba2rgb(
binary_cmap(pred_sample_type_maps[i] / num_nuclei_classes)
)
# plotting
axs[i].imshow(placeholder)
axs[i].set_xticks([], [])
# plot labels in first row
if i == 0:
axs[i].set_xticks(np.arange(w / 2, 6 * w, w))
axs[i].set_xticklabels(
[
"Image",
"Binary-Cells",
"HV-Map-0",
"HV-Map-1",
"Cell Instances",
"Nuclei-Instances",
],
fontsize=6,
)
axs[i].xaxis.tick_top()
axs[i].set_yticks(np.arange(h / 2, 2 * h, h))
axs[i].set_yticklabels(["GT", "Pred."], fontsize=6)
axs[i].tick_params(axis="both", which="both", length=0)
grid_x = np.arange(w, 6 * w, w)
grid_y = np.arange(h, 2 * h, h)
for x_seg in grid_x:
axs[i].axvline(x_seg, color="black")
for y_seg in grid_y:
axs[i].axhline(y_seg, color="black")
fig.suptitle(f"Patch Predictions for {num_images} Examples")
fig.tight_layout()
return fig
|