Spaces:
Runtime error
Runtime error
File size: 2,501 Bytes
ce7b81a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
from sklearn import metrics
import numpy
from operator import itemgetter
def tuneThresholdfromScore(scores, labels, target_fa, target_fr=None):
fpr, tpr, thresholds = metrics.roc_curve(labels, scores, pos_label=1)
fnr = 1 - tpr
tunedThreshold = []
if target_fr:
for tfr in target_fr:
idx = numpy.nanargmin(numpy.absolute((tfr - fnr)))
tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]])
for tfa in target_fa:
idx = numpy.nanargmin(numpy.absolute((tfa - fpr))) # numpy.where(fpr<=tfa)[0][-1] nanargmin 返回轴上最小的值忽略Nans
tunedThreshold.append([thresholds[idx], fpr[idx], fnr[idx]])
idxE = numpy.nanargmin(numpy.absolute((fnr - fpr)))
eer = max(fpr[idxE], fnr[idxE]) * 100
return tunedThreshold, eer, fpr, fnr
# Creates a list of false-negative rates, a list of false-positive rates
# and a list of decision thresholds that give those error-rates.
def ComputeErrorRates(scores, labels):
sorted_indexes, thresholds = zip(*sorted([(index, threshold) for index, threshold in enumerate(scores)],
key=itemgetter(1)))
labels = [labels[i] for i in sorted_indexes]
fnrs = [] # 负样本接受
fprs = [] # 正样本接受
for i in range(0, len(labels)):
if i == 0:
fnrs.append(labels[i])
fprs.append(1 - labels[i])
else:
fnrs.append(fnrs[i-1] + labels[i])
fprs.append(fprs[i-1] + 1 - labels[i])
fnrs_norm = sum(labels) # 真正样本个数
fprs_norm = len(labels) - fnrs_norm # 负样本个数
fnrs = [x / float(fnrs_norm) for x in fnrs] # 错误的拒绝 正样本分错的比例
fprs = [1 - x / float(fprs_norm) for x in fprs] # 错误接受 负样本分错的比例
return fnrs, fprs, thresholds
# Computes the minimum of the detection cost function. The comments refer to
# equations in Section 3 of the NIST 2016 Speaker Recognition Evaluation Plan.
def ComputeMinDcf(fnrs, fprs, thresholds, p_target, c_miss, c_fa):
min_c_det = float("inf")
min_c_det_threshold = thresholds[0]
for i in range(0, len(fnrs)):
c_det = c_miss * fnrs[i] * p_target + c_fa * fprs[i] * (1 - p_target)
if c_det < min_c_det:
min_c_det = c_det
min_c_det_threshold = thresholds[i]
c_def = min(c_miss * p_target, c_fa * (1 - p_target))
min_dcf = min_c_det / c_def
return min_dcf, min_c_det_threshold |