File size: 4,503 Bytes
448d919
 
 
 
 
 
 
 
0ba1071
448d919
 
 
 
 
 
 
 
 
 
0ba1071
448d919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba1071
448d919
6759e22
448d919
 
0ba1071
 
 
448d919
 
 
 
 
 
 
 
 
0ba1071
448d919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6759e22
 
 
 
 
 
 
448d919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6759e22
448d919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python

import random

import gradio as gr
import numpy as np
import PIL.Image
import torch
import torchvision.transforms.functional as TF
from diffusers import DDPMScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter

DESCRIPTION = "# T2I-Adapter-SDXL Sketch"

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    model_id = "stabilityai/stable-diffusion-xl-base-1.0"
    adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16")
    scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler")
    pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
        model_id,
        adapter=adapter,
        safety_checker=None,
        torch_dtype=torch.float16,
        variant="fp16",
        scheduler=scheduler,
    )
    pipe.to(device)
else:
    pipe = None

MAX_SEED = np.iinfo(np.int32).max


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def run(
    image: PIL.Image.Image,
    prompt: str,
    negative_prompt: str,
    num_steps=25,
    guidance_scale=7.5,
    adapter_conditioning_scale=0.8,
    seed=0,
) -> PIL.Image.Image:
    image = image.convert("RGB").resize((1024, 1024))
    image = TF.to_tensor(image) > 0.5
    image = TF.to_pil_image(image.to(torch.float32))

    generator = torch.Generator(device=device).manual_seed(seed)
    out = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=image,
        num_inference_steps=num_steps,
        generator=generator,
        guidance_scale=guidance_scale,
        adapter_conditioning_scale=adapter_conditioning_scale,
    ).images[0]
    return out


with gr.Blocks() as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            image = gr.Image(
                source="canvas",
                tool="sketch",
                type="pil",
                image_mode="1",
                invert_colors=True,
                shape=(1024, 1024),
                brush_radius=20,
                height=600,
            )
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button("Run")
            with gr.Accordion("Advanced options", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality"
                )
                num_steps = gr.Slider(
                    label="Number of steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50,
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=30.0,
                    step=0.1,
                    value=7.5,
                )
                adapter_conditioning_scale = gr.Slider(
                    label="Adapter Conditioning Ccale",
                    minimum=0.5,
                    maximum=1,
                    step=0.1,
                    value=.85,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Column():
            result = gr.Image(label="Result", height=600)

    inputs = [
        image,
        prompt,
        negative_prompt,
        num_steps,
        guidance_scale,
        adapter_conditioning_scale,
        seed,
    ]
    prompt.submit(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=run,
        inputs=inputs,
        outputs=result,
        api_name=False,
    )
    run_button.click(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=run,
        inputs=inputs,
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()