File size: 2,382 Bytes
24bea5e
26f0415
3fef117
f8e1148
 
 
b1300f3
17b0f71
 
f79d747
 
 
 
 
17b0f71
f79d747
 
b60b62e
17b0f71
 
f79d747
17b0f71
 
b53917d
17b0f71
 
c3ae4e4
17b0f71
f79d747
 
17b0f71
f79d747
17b0f71
 
 
 
f79d747
17b0f71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# YOLOv5 πŸš€ by Ultralytics, GPL-3.0 license
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
# Example usage: python train.py --data SKU-110K.yaml
# parent
# β”œβ”€β”€ yolov5
# └── datasets
#     └── SKU-110K  ← downloads here (13.6 GB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/SKU-110K  # dataset root dir
train: train.txt  # train images (relative to 'path')  8219 images
val: val.txt  # val images (relative to 'path')  588 images
test: test.txt  # test images (optional)  2936 images

# Classes
nc: 1  # number of classes
names: ['object']  # class names


# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
  import shutil
  from tqdm import tqdm
  from utils.general import np, pd, Path, download, xyxy2xywh


  # Download
  dir = Path(yaml['path'])  # dataset root dir
  parent = Path(dir.parent)  # download dir
  urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
  download(urls, dir=parent, delete=False)

  # Rename directories
  if dir.exists():
      shutil.rmtree(dir)
  (parent / 'SKU110K_fixed').rename(dir)  # rename dir
  (dir / 'labels').mkdir(parents=True, exist_ok=True)  # create labels dir

  # Convert labels
  names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height'  # column names
  for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
      x = pd.read_csv(dir / 'annotations' / d, names=names).values  # annotations
      images, unique_images = x[:, 0], np.unique(x[:, 0])
      with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
          f.writelines(f'./images/{s}\n' for s in unique_images)
      for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
          cls = 0  # single-class dataset
          with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
              for r in x[images == im]:
                  w, h = r[6], r[7]  # image width, height
                  xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0]  # instance
                  f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n")  # write label