File size: 1,809 Bytes
1e84a23
9b92d3e
8bf3cff
2e8e027
c2026a5
2e8e027
 
720afe6
c64fe21
2dfe320
9ccfa85
2077d78
1e84a23
 
 
 
 
 
 
c64fe21
 
1e84a23
 
 
 
 
 
916d4aa
1e84a23
 
68211f7
1e84a23
 
c80b249
1e84a23
 
bb8872e
1e84a23
 
08d3119
1e84a23
893a905
8dc68fc
1e84a23
893a905
08d3119
2dd43bc
 
4821d07
1e84a23
 
2dd43bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:21.03-py3

# Install linux packages
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx

# Install python dependencies
COPY requirements.txt .
RUN python -m pip install --upgrade pip
RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook

# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

# Copy contents
COPY . /usr/src/app

# Set environment variables
ENV HOME=/usr/src/app


# ---------------------------------------------------  Extras Below  ---------------------------------------------------

# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done

# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t

# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t

# Kill all
# sudo docker kill $(sudo docker ps -q)

# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)

# Bash into running container
# sudo docker exec -it 5a9b5863d93d bash

# Bash into stopped container
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash

# Send weights to GCP
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt

# Clean up
# docker system prune -a --volumes