File size: 22,095 Bytes
1e84a23
 
 
 
 
 
2368603
1e84a23
 
 
 
6c1b87a
1e84a23
 
 
 
 
 
 
 
 
 
 
bf6f415
7abf202
 
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a85e6d0
1e84a23
 
bf6f415
1c13e67
6b134d9
4418809
 
 
 
c8152c8
4418809
9d63140
 
 
 
 
cb527d3
1e84a23
 
 
 
 
22d6088
1e84a23
 
 
 
cb527d3
 
1e84a23
 
 
 
 
 
e16e9e4
1e84a23
 
 
099e6f5
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b134d9
bf6f415
7abf202
 
 
1e84a23
 
16f6834
 
 
956511d
 
 
72d5b58
1e84a23
 
 
 
 
ce36905
1e84a23
 
 
14523bb
 
ce36905
1e84a23
b203c9b
13f6977
b203c9b
1e84a23
 
 
ce36905
 
 
1e84a23
 
ce36905
1e84a23
ce36905
1e84a23
ad4c22c
ce36905
ad4c22c
 
 
 
 
ce36905
1e84a23
 
 
 
 
16f6834
140d84c
1e84a23
 
 
 
140d84c
1e84a23
 
22fb2b0
 
 
1e84a23
24c5a94
1e84a23
 
 
22fb2b0
ad4c22c
1e84a23
 
 
 
 
 
 
e16e9e4
1e84a23
31f3310
1e84a23
 
 
 
945307b
8db51c7
120d40c
8db51c7
1e84a23
31f3310
9fdb0fb
 
31f3310
1e84a23
a1c8406
1e84a23
 
 
16f6834
1e84a23
 
16f6834
1e84a23
22fb2b0
1e84a23
 
 
 
 
 
 
 
 
 
 
37e13f8
 
 
 
1e84a23
 
 
 
 
a1c8406
1e84a23
16f6834
 
 
1e84a23
 
 
 
 
 
 
 
 
55ca5c7
 
 
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ca5c7
 
1e84a23
 
 
 
6b134d9
256a3e8
 
 
1e84a23
 
 
 
 
 
 
 
01a73ec
1e84a23
 
 
eb97b2e
 
 
 
 
 
9b7386f
1e84a23
 
 
 
 
98fc483
1e84a23
 
 
 
5de4e25
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
ce36905
eb97b2e
 
df224a0
eb97b2e
1e84a23
 
ce36905
1e84a23
ce36905
 
1e84a23
 
 
 
3bdea3f
 
 
 
 
 
 
 
 
 
 
1e84a23
6b134d9
1e84a23
afe1df3
1e84a23
 
 
 
 
915b148
1e84a23
6b134d9
 
 
de19165
 
6b134d9
1e84a23
bf6f415
 
1e84a23
 
9fdb0fb
1e84a23
 
 
 
 
 
2d396be
1e84a23
 
bf6f415
6b134d9
52bac22
 
86784cf
c5966ab
 
1c13e67
 
 
 
1e84a23
 
 
 
 
 
 
 
603ea0b
1c13e67
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
import argparse

import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter

import test  # import test.py to get mAP after each epoch
from models.yolo import Model
from utils import google_utils
from utils.datasets import *
from utils.utils import *

mixed_precision = True
try:  # Mixed precision training https://github.com/NVIDIA/apex
    from apex import amp
except:
    print('Apex recommended for faster mixed precision training: https://github.com/NVIDIA/apex')
    mixed_precision = False  # not installed

# Hyperparameters
hyp = {'optimizer': 'SGD',  # ['adam', 'SGD', None] if none, default is SGD
       'lr0': 0.01,  # initial learning rate (SGD=1E-2, Adam=1E-3)
       'momentum': 0.937,  # SGD momentum/Adam beta1
       'weight_decay': 5e-4,  # optimizer weight decay
       'giou': 0.05,  # giou loss gain
       'cls': 0.58,  # cls loss gain
       'cls_pw': 1.0,  # cls BCELoss positive_weight
       'obj': 1.0,  # obj loss gain (*=img_size/320 if img_size != 320)
       'obj_pw': 1.0,  # obj BCELoss positive_weight
       'iou_t': 0.20,  # iou training threshold
       'anchor_t': 4.0,  # anchor-multiple threshold
       'fl_gamma': 0.0,  # focal loss gamma (efficientDet default is gamma=1.5)
       'hsv_h': 0.014,  # image HSV-Hue augmentation (fraction)
       'hsv_s': 0.68,  # image HSV-Saturation augmentation (fraction)
       'hsv_v': 0.36,  # image HSV-Value augmentation (fraction)
       'degrees': 0.0,  # image rotation (+/- deg)
       'translate': 0.0,  # image translation (+/- fraction)
       'scale': 0.5,  # image scale (+/- gain)
       'shear': 0.0}  # image shear (+/- deg)


def train(hyp):
    print(f'Hyperparameters {hyp}')
    log_dir = tb_writer.log_dir if tb_writer else 'runs/evolution'  # run directory
    wdir = str(Path(log_dir) / 'weights') + os.sep  # weights directory

    os.makedirs(wdir, exist_ok=True)
    last = wdir + 'last.pt'
    best = wdir + 'best.pt'
    results_file = log_dir + os.sep + 'results.txt'

    # Save run settings
    with open(Path(log_dir) / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(Path(log_dir) / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    epochs = opt.epochs  # 300
    batch_size = opt.batch_size  # 64
    weights = opt.weights  # initial training weights

    # Configure
    init_seeds(1)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Remove previous results
    for f in glob.glob('*_batch*.jpg') + glob.glob(results_file):
        os.remove(f)

    # Create model
    model = Model(opt.cfg, nc=nc).to(device)

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        if v.requires_grad:
            if '.bias' in k:
                pg2.append(v)  # biases
            elif '.weight' in k and '.bn' not in k:
                pg1.append(v)  # apply weight decay
            else:
                pg0.append(v)  # all else

    if hyp['optimizer'] == 'adam':  # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.9 + 0.1  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs, save_dir=log_dir)

    # Load Model
    google_utils.attempt_download(weights)
    start_epoch, best_fitness = 0, 0.0
    if weights.endswith('.pt'):  # pytorch format
        ckpt = torch.load(weights, map_location=device)  # load checkpoint

        # load model
        try:
            ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
                             if model.state_dict()[k].shape == v.shape}  # to FP32, filter
            model.load_state_dict(ckpt['model'], strict=False)
        except KeyError as e:
            s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
                "Please delete or update %s and try again, or use --weights '' to train from scratch." \
                % (opt.weights, opt.cfg, opt.weights, opt.weights)
            raise KeyError(s) from e

        # load optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # load results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # epochs
        start_epoch = ckpt['epoch'] + 1
        if epochs < start_epoch:
            print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                  (opt.weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt

    # Mixed precision training https://github.com/NVIDIA/apex
    if mixed_precision:
        model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=0)

    # Distributed training
    if device.type != 'cpu' and torch.cuda.device_count() > 1 and dist.is_available():
        dist.init_process_group(backend='nccl',  # distributed backend
                                init_method='tcp://127.0.0.1:9999',  # init method
                                world_size=1,  # number of nodes
                                rank=0)  # node rank
        # model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)  # requires world_size > 1
        model = torch.nn.parallel.DistributedDataParallel(model)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Correct your labels or your model.' % (mlc, nc, opt.cfg)

    # Testloader
    testloader = create_dataloader(test_path, imgsz_test, batch_size, gs, opt,
                                   hyp=hyp, augment=False, cache=opt.cache_images, rect=True)[0]

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # giou loss ratio (obj_loss = 1.0 or giou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device)  # attach class weights
    model.names = names

    # Class frequency
    labels = np.concatenate(dataset.labels, 0)
    c = torch.tensor(labels[:, 0])  # classes
    # cf = torch.bincount(c.long(), minlength=nc) + 1.
    # model._initialize_biases(cf.to(device))
    plot_labels(labels, save_dir=log_dir)
    if tb_writer:
        tb_writer.add_hparams(hyp, {})
        tb_writer.add_histogram('classes', c, 0)

    # Check anchors
    if not opt.noautoanchor:
        check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

    # Exponential moving average
    ema = torch_utils.ModelEMA(model)

    # Start training
    t0 = time.time()
    nw = max(3 * nb, 1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
    scheduler.last_epoch = start_epoch - 1  # do not move
    print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
    print('Using %g dataloader workers' % dataloader.num_workers)
    print('Starting training for %g epochs...' % epochs)
    # torch.autograd.set_detect_anomaly(True)
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if dataset.image_weights:
            w = model.class_weights.cpu().numpy() * (1 - maps) ** 2  # class weights
            image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
            dataset.indices = random.choices(range(dataset.n), weights=image_weights, k=dataset.n)  # rand weighted idx

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
        pbar = tqdm(enumerate(dataloader), total=nb)  # progress bar
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # giou loss ratio (obj_loss = 1.0 or giou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            pred = model(imgs)

            # Loss
            loss, loss_items = compute_loss(pred, targets.to(device), model)
            if not torch.isfinite(loss):
                print('WARNING: non-finite loss, ending training ', loss_items)
                return results

            # Backward
            if mixed_precision:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            # Optimize
            if ni % accumulate == 0:
                optimizer.step()
                optimizer.zero_grad()
                ema.update(model)

            # Print
            mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
            mem = '%.3gG' % (torch.cuda.memory_cached() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
            s = ('%10s' * 2 + '%10.4g' * 6) % (
                '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
            pbar.set_description(s)

            # Plot
            if ni < 3:
                f = str(Path(log_dir) / ('train_batch%g.jpg' % ni))  # filename
                result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
                if tb_writer and result is not None:
                    tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        scheduler.step()

        # mAP
        ema.update_attr(model, include=['md', 'nc', 'hyp', 'gr', 'names', 'stride'])
        final_epoch = epoch + 1 == epochs
        if not opt.notest or final_epoch:  # Calculate mAP
            results, maps, times = test.test(opt.data,
                                             batch_size=batch_size,
                                             imgsz=imgsz_test,
                                             save_json=final_epoch and opt.data.endswith(os.sep + 'coco.yaml'),
                                             model=ema.ema,
                                             single_cls=opt.single_cls,
                                             dataloader=testloader,
                                             save_dir=log_dir)

        # Write
        with open(results_file, 'a') as f:
            f.write(s + '%10.4g' * 7 % results + '\n')  # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
        if len(opt.name) and opt.bucket:
            os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))

        # Tensorboard
        if tb_writer:
            tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
            for x, tag in zip(list(mloss[:-1]) + list(results), tags):
                tb_writer.add_scalar(tag, x, epoch)

        # Update best mAP
        fi = fitness(np.array(results).reshape(1, -1))  # fitness_i = weighted combination of [P, R, mAP, F1]
        if fi > best_fitness:
            best_fitness = fi

        # Save model
        save = (not opt.nosave) or (final_epoch and not opt.evolve)
        if save:
            with open(results_file, 'r') as f:  # create checkpoint
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': f.read(),
                        'model': ema.ema,
                        'optimizer': None if final_epoch else optimizer.state_dict()}

            # Save last, best and delete
            torch.save(ckpt, last)
            if (best_fitness == fi) and not final_epoch:
                torch.save(ckpt, best)
            del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    # Strip optimizers
    n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
    fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
    for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
        if os.path.exists(f1):
            os.rename(f1, f2)  # rename
            ispt = f2.endswith('.pt')  # is *.pt
            strip_optimizer(f2) if ispt else None  # strip optimizer
            os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None  # upload

    # Finish
    if not opt.evolve:
        plot_results(save_dir=log_dir)  # save as results.png
    print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
    dist.destroy_process_group() if device.type != 'cpu' and torch.cuda.device_count() > 1 else None
    torch.cuda.empty_cache()
    return results


if __name__ == '__main__':
    check_git_status()
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
    parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
    parser.add_argument('--hyp', type=str, default='', help='hyp.yaml path (optional)')
    parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size', type=int, default=16)
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const='get_last', default=False,
                        help='resume from given path/to/last.pt, or most recent run if blank.')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--weights', type=str, default='', help='initial weights path')
    parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
    opt = parser.parse_args()

    last = get_latest_run() if opt.resume == 'get_last' else opt.resume  # resume from most recent run
    if last and not opt.weights:
        print(f'Resuming training from {last}')
    opt.weights = last if opt.resume and not opt.weights else opt.weights
    opt.cfg = check_file(opt.cfg)  # check file
    opt.data = check_file(opt.data)  # check file
    if opt.hyp:  # update hyps
        opt.hyp = check_file(opt.hyp)  # check file
        with open(opt.hyp) as f:
            hyp.update(yaml.load(f, Loader=yaml.FullLoader))  # update hyps
    print(opt)
    opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
    device = torch_utils.select_device(opt.device, apex=mixed_precision, batch_size=opt.batch_size)
    if device.type == 'cpu':
        mixed_precision = False

    # Train
    if not opt.evolve:
        tb_writer = SummaryWriter(log_dir=increment_dir('runs/exp', opt.name))
        print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')
        train(hyp)

    # Evolve hyperparameters (optional)
    else:
        tb_writer = None
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

        for _ in range(10):  # generations to evolve
            if os.path.exists('evolve.txt'):  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.9, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([1, 1, 1, 1, 1, 1, 1, 0, .1, 1, 0, 1, 1, 1, 1, 1, 1, 1])  # gains
                ng = len(g)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = x[i + 7] * v[i]  # mutate

            # Clip to limits
            keys = ['lr0', 'iou_t', 'momentum', 'weight_decay', 'hsv_s', 'hsv_v', 'translate', 'scale', 'fl_gamma']
            limits = [(1e-5, 1e-2), (0.00, 0.70), (0.60, 0.98), (0, 0.001), (0, .9), (0, .9), (0, .9), (0, .9), (0, 3)]
            for k, v in zip(keys, limits):
                hyp[k] = np.clip(hyp[k], v[0], v[1])

            # Train mutation
            results = train(hyp.copy())

            # Write mutation results
            print_mutation(hyp, results, opt.bucket)

            # Plot results
            # plot_evolution_results(hyp)