File size: 5,933 Bytes
1e84a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# This file contains modules common to various models


import torch.nn.functional as F

from utils.utils import *


def DWConv(c1, c2, k=1, s=1, act=True):  # depthwise convolution
    return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class Conv(nn.Module):  # standard convolution
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
        super(Conv, self).__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, k // 2, groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))


class Bottleneck(nn.Module):
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super(Bottleneck, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckLight(nn.Module):
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super(BottleneckLight, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c_, c2, 3, 1, 3 // 2, groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.LeakyReLU(0.1, inplace=True)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return self.act(self.bn(x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))))


class BottleneckCSP(nn.Module):
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(BottleneckCSP, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(c2, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.LeakyReLU(0.1, inplace=True)
        self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class Narrow(nn.Module):
    def __init__(self, c1, c2, shortcut=True, g=1):  # ch_in, ch_out, shortcut, groups
        super(Narrow, self).__init__()
        c_ = c2 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class Origami(nn.Module):  # 5-side layering
    def forward(self, x):
        y = F.pad(x, [1, 1, 1, 1])
        return torch.cat([x, y[..., :-2, 1:-1], y[..., 1:-1, :-2], y[..., 2:, 1:-1], y[..., 1:-1, 2:]], 1)


class ConvPlus(nn.Module):  # standard convolution
    def __init__(self, c1, c2, k=3, s=1, g=1, bias=True):  # ch_in, ch_out, kernel, stride, groups
        super(ConvPlus, self).__init__()
        self.cv1 = nn.Conv2d(c1, c2, (k, 1), s, (k // 2, 0), groups=g, bias=bias)
        self.cv2 = nn.Conv2d(c1, c2, (1, k), s, (0, k // 2), groups=g, bias=bias)

    def forward(self, x):
        return self.cv1(x) + self.cv2(x)


class SPP(nn.Module):  # Spatial pyramid pooling layer used in YOLOv3-SPP
    def __init__(self, c1, c2, k=(5, 9, 13)):
        super(SPP, self).__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class Flatten(nn.Module):
    # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
    def forward(self, x):
        return x.view(x.size(0), -1)


class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1):
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, 1)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))


class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        super(Concat, self).__init__()
        self.d = dimension

    def forward(self, x):
        return torch.cat(x, self.d)


class MixConv2d(nn.Module):
    # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
    def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
        super(MixConv2d, self).__init__()
        groups = len(k)
        if equal_ch:  # equal c_ per group
            i = torch.linspace(0, groups - 1E-6, c2).floor()  # c2 indices
            c_ = [(i == g).sum() for g in range(groups)]  # intermediate channels
        else:  # equal weight.numel() per group
            b = [c2] + [0] * groups
            a = np.eye(groups + 1, groups, k=-1)
            a -= np.roll(a, 1, axis=1)
            a *= np.array(k) ** 2
            a[0] = 1
            c_ = np.linalg.lstsq(a, b, rcond=None)[0].round()  # solve for equal weight indices, ax = b

        self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.LeakyReLU(0.1, inplace=True)

    def forward(self, x):
        return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))