File size: 2,090 Bytes
24bea5e 1e84a23 47543f9 8bf3cff 2e8e027 c2026a5 2e8e027 720afe6 c64fe21 2dfe320 302a1b0 5e6886c c5ba2ab 2077d78 1e84a23 ce8e5dc c64fe21 ce8e5dc 1e84a23 07166ba 1e84a23 68211f7 1e84a23 07166ba 1e84a23 bb8872e 1e84a23 08d3119 1e84a23 893a905 8dc68fc 1e84a23 893a905 08d3119 2dd43bc 1e84a23 2dd43bc 40d1c80 2809616 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:21.05-py3
# Install linux packages
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
# Install python dependencies
COPY requirements.txt .
RUN python -m pip install --upgrade pip
RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
RUN pip install --no-cache -r requirements.txt coremltools onnx gsutil notebook wandb>=0.12.2
RUN pip install --no-cache -U torch torchvision numpy
# RUN pip install --no-cache torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Copy contents
COPY . /usr/src/app
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/
# Set environment variables
# ENV HOME=/usr/src/app
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
# Pull and Run with local directory access
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
# Kill all
# sudo docker kill $(sudo docker ps -q)
# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
# Bash into running container
# sudo docker exec -it 5a9b5863d93d bash
# Bash into stopped container
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
# Clean up
# docker system prune -a --volumes
# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
|