|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from collections import defaultdict |
|
from typing import Callable, Dict, Union |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
from .modeling_utils import _get_model_file, load_dict |
|
from .models.cross_attention import LoRACrossAttnProcessor |
|
from .utils import HF_CACHE, PPDIFFUSERS_CACHE, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
LORA_WEIGHT_NAME = "paddle_lora_weights.pdparams" |
|
|
|
|
|
class AttnProcsLayers(nn.Layer): |
|
def __init__(self, state_dict: Dict[str, paddle.Tensor]): |
|
super().__init__() |
|
self.layers = nn.LayerList(state_dict.values()) |
|
self.mapping = {k: v for k, v in enumerate(state_dict.keys())} |
|
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} |
|
|
|
|
|
|
|
def map_to(state_dict, *args, **kwargs): |
|
new_state_dict = {} |
|
for key, value in state_dict.items(): |
|
num = int(key.split(".")[1]) |
|
new_key = key.replace(f"layers.{num}", self.mapping[num]) |
|
new_state_dict[new_key] = value |
|
|
|
return new_state_dict |
|
|
|
def map_from(module, state_dict, *args, **kwargs): |
|
all_keys = list(state_dict.keys()) |
|
for key in all_keys: |
|
replace_key = key.split(".processor")[0] + ".processor" |
|
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") |
|
state_dict[new_key] = state_dict[key] |
|
del state_dict[key] |
|
|
|
self.register_state_dict_hook(map_to) |
|
self.register_load_state_dict_pre_hook(map_from, with_module=True) |
|
|
|
|
|
class UNet2DConditionLoadersMixin: |
|
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, paddle.Tensor]], **kwargs): |
|
r""" |
|
Load pretrained attention processor layers into `UNet2DConditionModel`. Attention processor layers have to be |
|
defined in |
|
[cross_attention.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py) |
|
and be a `paddle.nn.Layer` class. |
|
<Tip warning={true}> |
|
This function is experimental and might change in the future |
|
</Tip> |
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
Can be either: |
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. |
|
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`. |
|
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g., |
|
`./my_model_directory/`. |
|
- A [paddle state |
|
dict]. |
|
from_hf_hub (bool, optional): whether to load from Huggingface Hub. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the |
|
standard cache should not be used. |
|
subfolder (`str`, *optional*, defaults to `None`): |
|
In case the relevant files are located inside a subfolder of the model repo (either remote in |
|
huggingface.co or downloaded locally), you can specify the folder name here. |
|
""" |
|
|
|
from_hf_hub = kwargs.pop("from_hf_hub", False) |
|
if from_hf_hub: |
|
cache_dir = kwargs.pop("cache_dir", HF_CACHE) |
|
else: |
|
cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE) |
|
subfolder = kwargs.pop("subfolder", None) |
|
weight_name = kwargs.pop("weight_name", LORA_WEIGHT_NAME) |
|
|
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name, |
|
cache_dir=cache_dir, |
|
subfolder=subfolder, |
|
from_hf_hub=from_hf_hub, |
|
) |
|
state_dict = load_dict(model_file, map_location="cpu") |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
|
|
attn_processors = {} |
|
|
|
is_lora = all("lora" in k for k in state_dict.keys()) |
|
|
|
if is_lora: |
|
lora_grouped_dict = defaultdict(dict) |
|
for key, value in state_dict.items(): |
|
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:]) |
|
lora_grouped_dict[attn_processor_key][sub_key] = value |
|
|
|
for key, value_dict in lora_grouped_dict.items(): |
|
rank = value_dict["to_k_lora.down.weight"].shape[1] |
|
cross_attention_dim = value_dict["to_k_lora.down.weight"].shape[0] |
|
hidden_size = value_dict["to_k_lora.up.weight"].shape[1] |
|
|
|
attn_processors[key] = LoRACrossAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=rank |
|
) |
|
attn_processors[key].load_dict(value_dict) |
|
|
|
else: |
|
raise ValueError(f"{model_file} does not seem to be in the correct format expected by LoRA training.") |
|
|
|
|
|
attn_processors = {k: v.to(dtype=self.dtype) for k, v in attn_processors.items()} |
|
|
|
|
|
self.set_attn_processor(attn_processors) |
|
|
|
def save_attn_procs( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
is_main_process: bool = True, |
|
weights_name: str = LORA_WEIGHT_NAME, |
|
save_function: Callable = None, |
|
): |
|
r""" |
|
Save an attention procesor to a directory, so that it can be re-loaded using the |
|
`[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`]` method. |
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to which to save. Will be created if it doesn't exist. |
|
is_main_process (`bool`, *optional*, defaults to `True`): |
|
Whether the process calling this is the main process or not. Useful when in distributed training like |
|
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on |
|
the main process to avoid race conditions. |
|
weights_name (`str`, *optional*, defaults to `LORA_WEIGHT_NAME`): |
|
The name of weights. |
|
save_function (`Callable`): |
|
The function to use to save the state dictionary. Useful on distributed training like TPUs when one |
|
need to replace `torch.save` by another method. Can be configured with the environment variable |
|
`DIFFUSERS_SAVE_MODE`. |
|
""" |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
if save_function is None: |
|
save_function = paddle.save |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
model_to_save = AttnProcsLayers(self.attn_processors) |
|
|
|
|
|
state_dict = model_to_save.state_dict() |
|
|
|
|
|
for filename in os.listdir(save_directory): |
|
full_filename = os.path.join(save_directory, filename) |
|
|
|
|
|
weights_no_suffix = weights_name.replace(".pdparams", "") |
|
if filename.startswith(weights_no_suffix) and os.path.isfile(full_filename) and is_main_process: |
|
os.remove(full_filename) |
|
|
|
|
|
save_function(state_dict, os.path.join(save_directory, weights_name)) |
|
|
|
logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}") |
|
|