File size: 6,362 Bytes
d18f074
 
457dd9b
89df602
 
 
 
 
a79f40e
d18f074
89df602
 
d18f074
 
4c56c8b
992a99c
d18f074
4c56c8b
 
 
 
 
 
89df602
 
 
 
 
 
 
 
 
 
c8b4b1d
 
a79f40e
89df602
 
 
 
 
 
 
a79f40e
89df602
 
 
 
 
 
d18f074
4c56c8b
 
 
 
89df602
 
a79f40e
b5d38bf
89df602
 
 
 
b5d38bf
6ca6cf4
 
 
 
c8b4b1d
89df602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5d38bf
89df602
 
 
457dd9b
89df602
 
 
 
 
e276a90
 
 
c8b4b1d
 
 
 
a79f40e
e276a90
 
c8b4b1d
e276a90
c8b4b1d
e276a90
 
 
89df602
 
a79f40e
0d9d0ee
 
 
 
 
 
 
 
 
 
c0b00f2
0d9d0ee
 
d18f074
89df602
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import torch
import os
from glob import glob
from pathlib import Path
from typing import Optional

from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import export_to_video
from PIL import Image

import random
import spaces

fps25Pipe = StableVideoDiffusionPipeline.from_pretrained(
    "vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16"
)
fps25Pipe.to("cuda")

fps14Pipe = StableVideoDiffusionPipeline.from_pretrained(
    "stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16"
)
fps14Pipe.to("cuda")

max_64_bit_int = 2**63 - 1

@spaces.GPU(duration=120)
def sample(
    image: Image,
    seed: Optional[int] = 42,
    randomize_seed: bool = True,
    motion_bucket_id: int = 127,
    fps_id: int = 6,
    noise_aug_strength: float = 0.1,
    decoding_t: int = 3,
    frame_format: str = "webp",
    version: str = "svd_xt",
    device: str = "cuda",
    output_folder: str = "outputs",
):
    if image.mode == "RGBA":
        image = image.convert("RGB")
        
    if randomize_seed:
        seed = random.randint(0, max_64_bit_int)
    generator = torch.manual_seed(seed)
    
    os.makedirs(output_folder, exist_ok=True)
    base_count = len(glob(os.path.join(output_folder, "*.mp4")))
    video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")

    if 14 < fps_id:
        frames = fps25Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
    else:
        frames = fps14Pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25).frames[0]
    export_to_video(frames, video_path, fps=fps_id)
    
    return video_path, gr.update(label="Generated frames in *." + frame_format + " format", format = frame_format, value = frames), seed

def resize_image(image, output_size=(1024, 576)):
    # Calculate aspect ratios
    target_aspect = output_size[0] / output_size[1]  # Aspect ratio of the desired size
    image_aspect = image.width / image.height  # Aspect ratio of the original image

    # Do not touch the image if the size is good
    if image.width == output_size[0] and image.height == output_size[1]:
        return image

    # Resize if the original image is larger
    if image_aspect > target_aspect:
        # Resize the image to match the target height, maintaining aspect ratio
        new_height = output_size[1]
        new_width = int(new_height * image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = (new_width - output_size[0]) / 2
        top = 0
        right = (new_width + output_size[0]) / 2
        bottom = output_size[1]
    else:
        # Resize the image to match the target width, maintaining aspect ratio
        new_width = output_size[0]
        new_height = int(new_width / image_aspect)
        resized_image = image.resize((new_width, new_height), Image.LANCZOS)
        # Calculate coordinates for cropping
        left = 0
        top = (new_height - output_size[1]) / 2
        right = output_size[0]
        bottom = (new_height + output_size[1]) / 2

    # Crop the image
    cropped_image = resized_image.crop((left, top, right, bottom))
    return cropped_image

with gr.Blocks() as demo:
  gr.Markdown('''# Community demo for Stable Video Diffusion - Img2Vid - XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt), [paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets), [stability's ui waitlist](https://stability.ai/contact))
#### Research release ([_non-commercial_](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt/blob/main/LICENSE)): generate `4s` vid from a single image at (`25 frames` at `6 fps`). this demo uses [🧨 diffusers for low VRAM and fast generation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/svd).
  ''')
  with gr.Row():
      with gr.Column():
          image = gr.Image(label="Upload your image", type="pil")
          with gr.Accordion("Advanced options", open=False):
              fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
              motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
              noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1)
              decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1)
              frame_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="webp", interactive=True)
              seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
              randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

          generate_btn = gr.Button(value="Animate", variant="primary")

      with gr.Column():
          video = gr.Video(label="Generated video")
          gallery = gr.Gallery(label="Generated frames")
      
  image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
  generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, frame_format], outputs=[video, gallery, seed], api_name="video")
    
  gr.Examples(
    examples=[
        ["Examples/Fire.webp", 25, 127, 0.1, 3, "png", 42, True],
        ["Examples/Town.jpeg", 25, 127, 0.1, 3, "png", 42, True],
        ["Examples/Water.png", 25, 127, 0.1, 3, "png", 42, True]
    ],
    inputs=[image, fps_id, motion_bucket_id, noise_aug_strength, decoding_t, frame_format, seed, randomize_seed],
    outputs=[video, gallery, seed],
    fn=sample,
    run_on_click=False,
    cache_examples=False,
  )

if __name__ == "__main__":
    demo.launch(share=True, show_api=False)