Spaces:
Running
Running
File size: 949 Bytes
9f934ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import json
import torch
from PIL import Image
from torchvision import models, transforms
with open("data/imagenet-simple-labels.json") as f:
labels = json.load(f)
model = models.vgg16(pretrained=True)
model.eval() # 推論モードに設定
preprocess = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
def classify_image(input_image: Image):
img_t = preprocess(input_image)
batch_t = torch.unsqueeze(img_t, 0)
with torch.no_grad():
output = model(batch_t)
probabilities = torch.nn.functional.softmax(output, dim=1)
label_to_prob = {labels[i]: prob for i, prob in enumerate(probabilities[0])}
return label_to_prob
demo = gr.Interface(fn=classify_image, inputs=gr.Image(type="pil"), outputs="label")
demo.launch()
|