File size: 18,731 Bytes
47af768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import glob
import json
import logging
import os
import sys
from pathlib import Path

logger = logging.getLogger(__name__)

FILE = Path(__file__).resolve()
ROOT = FILE.parents[3]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH

try:
    import comet_ml

    # Project Configuration
    config = comet_ml.config.get_config()
    COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5')
except (ModuleNotFoundError, ImportError):
    comet_ml = None
    COMET_PROJECT_NAME = None

import PIL
import torch
import torchvision.transforms as T
import yaml

from utils.dataloaders import img2label_paths
from utils.general import check_dataset, scale_boxes, xywh2xyxy
from utils.metrics import box_iou

COMET_PREFIX = 'comet://'

COMET_MODE = os.getenv('COMET_MODE', 'online')

# Model Saving Settings
COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5')

# Dataset Artifact Settings
COMET_UPLOAD_DATASET = os.getenv('COMET_UPLOAD_DATASET', 'false').lower() == 'true'

# Evaluation Settings
COMET_LOG_CONFUSION_MATRIX = os.getenv('COMET_LOG_CONFUSION_MATRIX', 'true').lower() == 'true'
COMET_LOG_PREDICTIONS = os.getenv('COMET_LOG_PREDICTIONS', 'true').lower() == 'true'
COMET_MAX_IMAGE_UPLOADS = int(os.getenv('COMET_MAX_IMAGE_UPLOADS', 100))

# Confusion Matrix Settings
CONF_THRES = float(os.getenv('CONF_THRES', 0.001))
IOU_THRES = float(os.getenv('IOU_THRES', 0.6))

# Batch Logging Settings
COMET_LOG_BATCH_METRICS = os.getenv('COMET_LOG_BATCH_METRICS', 'false').lower() == 'true'
COMET_BATCH_LOGGING_INTERVAL = os.getenv('COMET_BATCH_LOGGING_INTERVAL', 1)
COMET_PREDICTION_LOGGING_INTERVAL = os.getenv('COMET_PREDICTION_LOGGING_INTERVAL', 1)
COMET_LOG_PER_CLASS_METRICS = os.getenv('COMET_LOG_PER_CLASS_METRICS', 'false').lower() == 'true'

RANK = int(os.getenv('RANK', -1))

to_pil = T.ToPILImage()


class CometLogger:
    """Log metrics, parameters, source code, models and much more
    with Comet
    """

    def __init__(self, opt, hyp, run_id=None, job_type='Training', **experiment_kwargs) -> None:
        self.job_type = job_type
        self.opt = opt
        self.hyp = hyp

        # Comet Flags
        self.comet_mode = COMET_MODE

        self.save_model = opt.save_period > -1
        self.model_name = COMET_MODEL_NAME

        # Batch Logging Settings
        self.log_batch_metrics = COMET_LOG_BATCH_METRICS
        self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL

        # Dataset Artifact Settings
        self.upload_dataset = self.opt.upload_dataset if self.opt.upload_dataset else COMET_UPLOAD_DATASET
        self.resume = self.opt.resume

        # Default parameters to pass to Experiment objects
        self.default_experiment_kwargs = {
            'log_code': False,
            'log_env_gpu': True,
            'log_env_cpu': True,
            'project_name': COMET_PROJECT_NAME,}
        self.default_experiment_kwargs.update(experiment_kwargs)
        self.experiment = self._get_experiment(self.comet_mode, run_id)

        self.data_dict = self.check_dataset(self.opt.data)
        self.class_names = self.data_dict['names']
        self.num_classes = self.data_dict['nc']

        self.logged_images_count = 0
        self.max_images = COMET_MAX_IMAGE_UPLOADS

        if run_id is None:
            self.experiment.log_other('Created from', 'YOLOv5')
            if not isinstance(self.experiment, comet_ml.OfflineExperiment):
                workspace, project_name, experiment_id = self.experiment.url.split('/')[-3:]
                self.experiment.log_other(
                    'Run Path',
                    f'{workspace}/{project_name}/{experiment_id}',
                )
            self.log_parameters(vars(opt))
            self.log_parameters(self.opt.hyp)
            self.log_asset_data(
                self.opt.hyp,
                name='hyperparameters.json',
                metadata={'type': 'hyp-config-file'},
            )
            self.log_asset(
                f'{self.opt.save_dir}/opt.yaml',
                metadata={'type': 'opt-config-file'},
            )

        self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX

        if hasattr(self.opt, 'conf_thres'):
            self.conf_thres = self.opt.conf_thres
        else:
            self.conf_thres = CONF_THRES
        if hasattr(self.opt, 'iou_thres'):
            self.iou_thres = self.opt.iou_thres
        else:
            self.iou_thres = IOU_THRES

        self.log_parameters({'val_iou_threshold': self.iou_thres, 'val_conf_threshold': self.conf_thres})

        self.comet_log_predictions = COMET_LOG_PREDICTIONS
        if self.opt.bbox_interval == -1:
            self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
        else:
            self.comet_log_prediction_interval = self.opt.bbox_interval

        if self.comet_log_predictions:
            self.metadata_dict = {}
            self.logged_image_names = []

        self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS

        self.experiment.log_others({
            'comet_mode': COMET_MODE,
            'comet_max_image_uploads': COMET_MAX_IMAGE_UPLOADS,
            'comet_log_per_class_metrics': COMET_LOG_PER_CLASS_METRICS,
            'comet_log_batch_metrics': COMET_LOG_BATCH_METRICS,
            'comet_log_confusion_matrix': COMET_LOG_CONFUSION_MATRIX,
            'comet_model_name': COMET_MODEL_NAME,})

        # Check if running the Experiment with the Comet Optimizer
        if hasattr(self.opt, 'comet_optimizer_id'):
            self.experiment.log_other('optimizer_id', self.opt.comet_optimizer_id)
            self.experiment.log_other('optimizer_objective', self.opt.comet_optimizer_objective)
            self.experiment.log_other('optimizer_metric', self.opt.comet_optimizer_metric)
            self.experiment.log_other('optimizer_parameters', json.dumps(self.hyp))

    def _get_experiment(self, mode, experiment_id=None):
        if mode == 'offline':
            if experiment_id is not None:
                return comet_ml.ExistingOfflineExperiment(
                    previous_experiment=experiment_id,
                    **self.default_experiment_kwargs,
                )

            return comet_ml.OfflineExperiment(**self.default_experiment_kwargs,)

        else:
            try:
                if experiment_id is not None:
                    return comet_ml.ExistingExperiment(
                        previous_experiment=experiment_id,
                        **self.default_experiment_kwargs,
                    )

                return comet_ml.Experiment(**self.default_experiment_kwargs)

            except ValueError:
                logger.warning('COMET WARNING: '
                               'Comet credentials have not been set. '
                               'Comet will default to offline logging. '
                               'Please set your credentials to enable online logging.')
                return self._get_experiment('offline', experiment_id)

        return

    def log_metrics(self, log_dict, **kwargs):
        self.experiment.log_metrics(log_dict, **kwargs)

    def log_parameters(self, log_dict, **kwargs):
        self.experiment.log_parameters(log_dict, **kwargs)

    def log_asset(self, asset_path, **kwargs):
        self.experiment.log_asset(asset_path, **kwargs)

    def log_asset_data(self, asset, **kwargs):
        self.experiment.log_asset_data(asset, **kwargs)

    def log_image(self, img, **kwargs):
        self.experiment.log_image(img, **kwargs)

    def log_model(self, path, opt, epoch, fitness_score, best_model=False):
        if not self.save_model:
            return

        model_metadata = {
            'fitness_score': fitness_score[-1],
            'epochs_trained': epoch + 1,
            'save_period': opt.save_period,
            'total_epochs': opt.epochs,}

        model_files = glob.glob(f'{path}/*.pt')
        for model_path in model_files:
            name = Path(model_path).name

            self.experiment.log_model(
                self.model_name,
                file_or_folder=model_path,
                file_name=name,
                metadata=model_metadata,
                overwrite=True,
            )

    def check_dataset(self, data_file):
        with open(data_file) as f:
            data_config = yaml.safe_load(f)

        if data_config['path'].startswith(COMET_PREFIX):
            path = data_config['path'].replace(COMET_PREFIX, '')
            data_dict = self.download_dataset_artifact(path)

            return data_dict

        self.log_asset(self.opt.data, metadata={'type': 'data-config-file'})

        return check_dataset(data_file)

    def log_predictions(self, image, labelsn, path, shape, predn):
        if self.logged_images_count >= self.max_images:
            return
        detections = predn[predn[:, 4] > self.conf_thres]
        iou = box_iou(labelsn[:, 1:], detections[:, :4])
        mask, _ = torch.where(iou > self.iou_thres)
        if len(mask) == 0:
            return

        filtered_detections = detections[mask]
        filtered_labels = labelsn[mask]

        image_id = path.split('/')[-1].split('.')[0]
        image_name = f'{image_id}_curr_epoch_{self.experiment.curr_epoch}'
        if image_name not in self.logged_image_names:
            native_scale_image = PIL.Image.open(path)
            self.log_image(native_scale_image, name=image_name)
            self.logged_image_names.append(image_name)

        metadata = []
        for cls, *xyxy in filtered_labels.tolist():
            metadata.append({
                'label': f'{self.class_names[int(cls)]}-gt',
                'score': 100,
                'box': {
                    'x': xyxy[0],
                    'y': xyxy[1],
                    'x2': xyxy[2],
                    'y2': xyxy[3]},})
        for *xyxy, conf, cls in filtered_detections.tolist():
            metadata.append({
                'label': f'{self.class_names[int(cls)]}',
                'score': conf * 100,
                'box': {
                    'x': xyxy[0],
                    'y': xyxy[1],
                    'x2': xyxy[2],
                    'y2': xyxy[3]},})

        self.metadata_dict[image_name] = metadata
        self.logged_images_count += 1

        return

    def preprocess_prediction(self, image, labels, shape, pred):
        nl, _ = labels.shape[0], pred.shape[0]

        # Predictions
        if self.opt.single_cls:
            pred[:, 5] = 0

        predn = pred.clone()
        scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])

        labelsn = None
        if nl:
            tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
            scale_boxes(image.shape[1:], tbox, shape[0], shape[1])  # native-space labels
            labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
            scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])  # native-space pred

        return predn, labelsn

    def add_assets_to_artifact(self, artifact, path, asset_path, split):
        img_paths = sorted(glob.glob(f'{asset_path}/*'))
        label_paths = img2label_paths(img_paths)

        for image_file, label_file in zip(img_paths, label_paths):
            image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])

            try:
                artifact.add(image_file, logical_path=image_logical_path, metadata={'split': split})
                artifact.add(label_file, logical_path=label_logical_path, metadata={'split': split})
            except ValueError as e:
                logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.')
                logger.error(f'COMET ERROR: {e}')
                continue

        return artifact

    def upload_dataset_artifact(self):
        dataset_name = self.data_dict.get('dataset_name', 'yolov5-dataset')
        path = str((ROOT / Path(self.data_dict['path'])).resolve())

        metadata = self.data_dict.copy()
        for key in ['train', 'val', 'test']:
            split_path = metadata.get(key)
            if split_path is not None:
                metadata[key] = split_path.replace(path, '')

        artifact = comet_ml.Artifact(name=dataset_name, artifact_type='dataset', metadata=metadata)
        for key in metadata.keys():
            if key in ['train', 'val', 'test']:
                if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
                    continue

                asset_path = self.data_dict.get(key)
                if asset_path is not None:
                    artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)

        self.experiment.log_artifact(artifact)

        return

    def download_dataset_artifact(self, artifact_path):
        logged_artifact = self.experiment.get_artifact(artifact_path)
        artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
        logged_artifact.download(artifact_save_dir)

        metadata = logged_artifact.metadata
        data_dict = metadata.copy()
        data_dict['path'] = artifact_save_dir

        metadata_names = metadata.get('names')
        if type(metadata_names) == dict:
            data_dict['names'] = {int(k): v for k, v in metadata.get('names').items()}
        elif type(metadata_names) == list:
            data_dict['names'] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
        else:
            raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"

        data_dict = self.update_data_paths(data_dict)
        return data_dict

    def update_data_paths(self, data_dict):
        path = data_dict.get('path', '')

        for split in ['train', 'val', 'test']:
            if data_dict.get(split):
                split_path = data_dict.get(split)
                data_dict[split] = (f'{path}/{split_path}' if isinstance(split, str) else [
                    f'{path}/{x}' for x in split_path])

        return data_dict

    def on_pretrain_routine_end(self, paths):
        if self.opt.resume:
            return

        for path in paths:
            self.log_asset(str(path))

        if self.upload_dataset:
            if not self.resume:
                self.upload_dataset_artifact()

        return

    def on_train_start(self):
        self.log_parameters(self.hyp)

    def on_train_epoch_start(self):
        return

    def on_train_epoch_end(self, epoch):
        self.experiment.curr_epoch = epoch

        return

    def on_train_batch_start(self):
        return

    def on_train_batch_end(self, log_dict, step):
        self.experiment.curr_step = step
        if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
            self.log_metrics(log_dict, step=step)

        return

    def on_train_end(self, files, save_dir, last, best, epoch, results):
        if self.comet_log_predictions:
            curr_epoch = self.experiment.curr_epoch
            self.experiment.log_asset_data(self.metadata_dict, 'image-metadata.json', epoch=curr_epoch)

        for f in files:
            self.log_asset(f, metadata={'epoch': epoch})
        self.log_asset(f'{save_dir}/results.csv', metadata={'epoch': epoch})

        if not self.opt.evolve:
            model_path = str(best if best.exists() else last)
            name = Path(model_path).name
            if self.save_model:
                self.experiment.log_model(
                    self.model_name,
                    file_or_folder=model_path,
                    file_name=name,
                    overwrite=True,
                )

        # Check if running Experiment with Comet Optimizer
        if hasattr(self.opt, 'comet_optimizer_id'):
            metric = results.get(self.opt.comet_optimizer_metric)
            self.experiment.log_other('optimizer_metric_value', metric)

        self.finish_run()

    def on_val_start(self):
        return

    def on_val_batch_start(self):
        return

    def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
        if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
            return

        for si, pred in enumerate(outputs):
            if len(pred) == 0:
                continue

            image = images[si]
            labels = targets[targets[:, 0] == si, 1:]
            shape = shapes[si]
            path = paths[si]
            predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
            if labelsn is not None:
                self.log_predictions(image, labelsn, path, shape, predn)

        return

    def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
        if self.comet_log_per_class_metrics:
            if self.num_classes > 1:
                for i, c in enumerate(ap_class):
                    class_name = self.class_names[c]
                    self.experiment.log_metrics(
                        {
                            'mAP@.5': ap50[i],
                            'mAP@.5:.95': ap[i],
                            'precision': p[i],
                            'recall': r[i],
                            'f1': f1[i],
                            'true_positives': tp[i],
                            'false_positives': fp[i],
                            'support': nt[c]},
                        prefix=class_name)

        if self.comet_log_confusion_matrix:
            epoch = self.experiment.curr_epoch
            class_names = list(self.class_names.values())
            class_names.append('background')
            num_classes = len(class_names)

            self.experiment.log_confusion_matrix(
                matrix=confusion_matrix.matrix,
                max_categories=num_classes,
                labels=class_names,
                epoch=epoch,
                column_label='Actual Category',
                row_label='Predicted Category',
                file_name=f'confusion-matrix-epoch-{epoch}.json',
            )

    def on_fit_epoch_end(self, result, epoch):
        self.log_metrics(result, epoch=epoch)

    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
        if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
            self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)

    def on_params_update(self, params):
        self.log_parameters(params)

    def finish_run(self):
        self.experiment.end()