File size: 13,074 Bytes
47af768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
    This script is adopted from the SORT script by Alex Bewley alex@bewley.ai
"""
from __future__ import print_function

import numpy as np
from .association import *
from yolov5.utils.general import xywh2xyxy


def k_previous_obs(observations, cur_age, k):
    if len(observations) == 0:
        return [-1, -1, -1, -1, -1]
    for i in range(k):
        dt = k - i
        if cur_age - dt in observations:
            return observations[cur_age-dt]
    max_age = max(observations.keys())
    return observations[max_age]


def convert_bbox_to_z(bbox):
    """
    Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form
      [x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is
      the aspect ratio
    """
    w = bbox[2] - bbox[0]
    h = bbox[3] - bbox[1]
    x = bbox[0] + w/2.
    y = bbox[1] + h/2.
    s = w * h  # scale is just area
    r = w / float(h+1e-6)
    return np.array([x, y, s, r]).reshape((4, 1))


def convert_x_to_bbox(x, score=None):
    """
    Takes a bounding box in the centre form [x,y,s,r] and returns it in the form
      [x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right
    """
    w = np.sqrt(x[2] * x[3])
    h = x[2] / w
    if(score == None):
      return np.array([x[0]-w/2., x[1]-h/2., x[0]+w/2., x[1]+h/2.]).reshape((1, 4))
    else:
      return np.array([x[0]-w/2., x[1]-h/2., x[0]+w/2., x[1]+h/2., score]).reshape((1, 5))


def speed_direction(bbox1, bbox2):
    cx1, cy1 = (bbox1[0]+bbox1[2]) / 2.0, (bbox1[1]+bbox1[3])/2.0
    cx2, cy2 = (bbox2[0]+bbox2[2]) / 2.0, (bbox2[1]+bbox2[3])/2.0
    speed = np.array([cy2-cy1, cx2-cx1])
    norm = np.sqrt((cy2-cy1)**2 + (cx2-cx1)**2) + 1e-6
    return speed / norm


class KalmanBoxTracker(object):
    """
    This class represents the internal state of individual tracked objects observed as bbox.
    """
    count = 0

    def __init__(self, bbox, cls, delta_t=3, orig=False):
        """
        Initialises a tracker using initial bounding box.

        """
        # define constant velocity model
        if not orig:
          from .kalmanfilter import KalmanFilterNew as KalmanFilter
          self.kf = KalmanFilter(dim_x=7, dim_z=4)
        else:
          from filterpy.kalman import KalmanFilter
          self.kf = KalmanFilter(dim_x=7, dim_z=4)
        self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [
                            0, 0, 0, 1, 0, 0, 0],  [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
        self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0],
                            [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])

        self.kf.R[2:, 2:] *= 10.
        self.kf.P[4:, 4:] *= 1000.  # give high uncertainty to the unobservable initial velocities
        self.kf.P *= 10.
        self.kf.Q[-1, -1] *= 0.01
        self.kf.Q[4:, 4:] *= 0.01

        self.kf.x[:4] = convert_bbox_to_z(bbox)
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history = []
        self.hits = 0
        self.hit_streak = 0
        self.age = 0
        #self.conf = conf
        self.cls = cls
        """
        NOTE: [-1,-1,-1,-1,-1] is a compromising placeholder for non-observation status, the same for the return of 
        function k_previous_obs. It is ugly and I do not like it. But to support generate observation array in a 
        fast and unified way, which you would see below k_observations = np.array([k_previous_obs(...]]), let's bear it for now.
        """
        self.last_observation = np.array([-1, -1, -1, -1, -1])  # placeholder
        self.observations = dict()
        self.history_observations = []
        self.velocity = None
        self.delta_t = delta_t

    def update(self, bbox, cls):
        """
        Updates the state vector with observed bbox.
        """
        
        if bbox is not None:
            self.cls = cls
            if self.last_observation.sum() >= 0:  # no previous observation
                previous_box = None
                for i in range(self.delta_t):
                    dt = self.delta_t - i
                    if self.age - dt in self.observations:
                        previous_box = self.observations[self.age-dt]
                        break
                if previous_box is None:
                    previous_box = self.last_observation
                """
                  Estimate the track speed direction with observations \Delta t steps away
                """
                self.velocity = speed_direction(previous_box, bbox)
            
            """
              Insert new observations. This is a ugly way to maintain both self.observations
              and self.history_observations. Bear it for the moment.
            """
            self.last_observation = bbox
            self.observations[self.age] = bbox
            self.history_observations.append(bbox)

            self.time_since_update = 0
            self.history = []
            self.hits += 1
            self.hit_streak += 1
            self.kf.update(convert_bbox_to_z(bbox))
        else:
            self.kf.update(bbox)

    def predict(self):
        """
        Advances the state vector and returns the predicted bounding box estimate.
        """
        if((self.kf.x[6]+self.kf.x[2]) <= 0):
            self.kf.x[6] *= 0.0

        self.kf.predict()
        self.age += 1
        if(self.time_since_update > 0):
            self.hit_streak = 0
        self.time_since_update += 1
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]

    def get_state(self):
        """
        Returns the current bounding box estimate.
        """
        return convert_x_to_bbox(self.kf.x)


"""
    We support multiple ways for association cost calculation, by default
    we use IoU. GIoU may have better performance in some situations. We note 
    that we hardly normalize the cost by all methods to (0,1) which may not be 
    the best practice.
"""
ASSO_FUNCS = {  "iou": iou_batch,
                "giou": giou_batch,
                "ciou": ciou_batch,
                "diou": diou_batch,
                "ct_dist": ct_dist}


class OCSort(object):
    def __init__(self, det_thresh, max_age=30, min_hits=3, 
        iou_threshold=0.3, delta_t=3, asso_func="iou", inertia=0.2, use_byte=False):
        """
        Sets key parameters for SORT
        """
        self.max_age = max_age
        self.min_hits = min_hits
        self.iou_threshold = iou_threshold
        self.trackers = []
        self.frame_count = 0
        self.det_thresh = det_thresh
        self.delta_t = delta_t
        self.asso_func = ASSO_FUNCS[asso_func]
        self.inertia = inertia
        self.use_byte = use_byte
        KalmanBoxTracker.count = 0

    def update(self, dets, _):
        """
        Params:
          dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
        Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
        Returns the a similar array, where the last column is the object ID.
        NOTE: The number of objects returned may differ from the number of detections provided.
        """

        self.frame_count += 1
        
        xyxys = dets[:, 0:4]
        confs = dets[:, 4]
        clss = dets[:, 5]
        
        classes = clss.numpy()
        xyxys = xyxys.numpy()
        confs = confs.numpy()

        output_results = np.column_stack((xyxys, confs, classes))
        
        inds_low = confs > 0.1
        inds_high = confs < self.det_thresh
        inds_second = np.logical_and(inds_low, inds_high)  # self.det_thresh > score > 0.1, for second matching
        dets_second = output_results[inds_second]  # detections for second matching
        remain_inds = confs > self.det_thresh
        dets = output_results[remain_inds]

        # get predicted locations from existing trackers.
        trks = np.zeros((len(self.trackers), 5))
        to_del = []
        ret = []
        for t, trk in enumerate(trks):
            pos = self.trackers[t].predict()[0]
            trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
            if np.any(np.isnan(pos)):
                to_del.append(t)
        trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
        for t in reversed(to_del):
            self.trackers.pop(t)

        velocities = np.array(
            [trk.velocity if trk.velocity is not None else np.array((0, 0)) for trk in self.trackers])
        last_boxes = np.array([trk.last_observation for trk in self.trackers])
        k_observations = np.array(
            [k_previous_obs(trk.observations, trk.age, self.delta_t) for trk in self.trackers])

        """
            First round of association
        """
        matched, unmatched_dets, unmatched_trks = associate(
            dets, trks, self.iou_threshold, velocities, k_observations, self.inertia)
        for m in matched:
            self.trackers[m[1]].update(dets[m[0], :5], dets[m[0], 5])

        """
            Second round of associaton by OCR
        """
        # BYTE association
        if self.use_byte and len(dets_second) > 0 and unmatched_trks.shape[0] > 0:
            u_trks = trks[unmatched_trks]
            iou_left = self.asso_func(dets_second, u_trks)          # iou between low score detections and unmatched tracks
            iou_left = np.array(iou_left)
            if iou_left.max() > self.iou_threshold:
                """
                    NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may
                    get a higher performance especially on MOT17/MOT20 datasets. But we keep it
                    uniform here for simplicity
                """
                matched_indices = linear_assignment(-iou_left)
                to_remove_trk_indices = []
                for m in matched_indices:
                    det_ind, trk_ind = m[0], unmatched_trks[m[1]]
                    if iou_left[m[0], m[1]] < self.iou_threshold:
                        continue
                    self.trackers[trk_ind].update(dets_second[det_ind, :5], dets_second[det_ind, 5])
                    to_remove_trk_indices.append(trk_ind)
                unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices))

        if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0:
            left_dets = dets[unmatched_dets]
            left_trks = last_boxes[unmatched_trks]
            iou_left = self.asso_func(left_dets, left_trks)
            iou_left = np.array(iou_left)
            if iou_left.max() > self.iou_threshold:
                """
                    NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may
                    get a higher performance especially on MOT17/MOT20 datasets. But we keep it
                    uniform here for simplicity
                """
                rematched_indices = linear_assignment(-iou_left)
                to_remove_det_indices = []
                to_remove_trk_indices = []
                for m in rematched_indices:
                    det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[1]]
                    if iou_left[m[0], m[1]] < self.iou_threshold:
                        continue
                    self.trackers[trk_ind].update(dets[det_ind, :5], dets[det_ind, 5])
                    to_remove_det_indices.append(det_ind)
                    to_remove_trk_indices.append(trk_ind)
                unmatched_dets = np.setdiff1d(unmatched_dets, np.array(to_remove_det_indices))
                unmatched_trks = np.setdiff1d(unmatched_trks, np.array(to_remove_trk_indices))

        for m in unmatched_trks:
            self.trackers[m].update(None, None)

        # create and initialise new trackers for unmatched detections
        for i in unmatched_dets:
            trk = KalmanBoxTracker(dets[i, :5], dets[i, 5], delta_t=self.delta_t)
            self.trackers.append(trk)
        i = len(self.trackers)
        for trk in reversed(self.trackers):
            if trk.last_observation.sum() < 0:
                d = trk.get_state()[0]
            else:
                """
                    this is optional to use the recent observation or the kalman filter prediction,
                    we didn't notice significant difference here
                """
                d = trk.last_observation[:4]
            if (trk.time_since_update < 1) and (trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits):
                # +1 as MOT benchmark requires positive
                ret.append(np.concatenate((d, [trk.id+1], [trk.cls])).reshape(1, -1))
            i -= 1
            # remove dead tracklet
            if(trk.time_since_update > self.max_age):
                self.trackers.pop(i)
        if(len(ret) > 0):
            return np.concatenate(ret)
        return np.empty((0, 5))