File size: 27,895 Bytes
e972e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
# --------------------------------------------------------
# X-Decoder -- Generalized Decoding for Pixel, Image, and Language
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Xueyan Zou (xueyan@cs.wisc.edu)
# --------------------------------------------------------

import random
from typing import Tuple
from unicodedata import name

import torch
from torch import nn
from torch.nn import functional as F
import numpy as np

from .registry import register_model
from ..utils import configurable
from ..backbone import build_backbone, Backbone
from ..body import build_xdecoder_head
from ..modules import sem_seg_postprocess, bbox_postprocess
from ..language import build_language_encoder
from ..language.loss import vl_similarity

from timm.models.layers import trunc_normal_
from nltk.stem.lancaster import LancasterStemmer
from detectron2.structures import Boxes, ImageList, Instances, BitMasks, BoxMode
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.data import MetadataCatalog
from utils.misc import prompt_engineering

st = LancasterStemmer()


class X_Decoder_Model(nn.Module):
    @configurable
    def __init__(
        self,
        *,
        backbone: Backbone,
        sem_seg_head: nn.Module,
        criterion: nn.Module,
        losses: dict,
        num_queries: int,
        object_mask_threshold: float,
        overlap_threshold: float,
        metadata,
        task_switch: dict,
        phrase_prob: float,
        size_divisibility: int,
        sem_seg_postprocess_before_inference: bool,
        pixel_mean: Tuple[float],
        pixel_std: Tuple[float],
        # inference
        semantic_on: bool,
        panoptic_on: bool,
        instance_on: bool,
        test_topk_per_image: int,
        train_dataset_name: str,
        retrieval_emsemble: bool,
        backbone_dim: int,
        dim_proj: int,
    ):
        super().__init__()
        self.backbone = backbone
        self.sem_seg_head = sem_seg_head
        self.criterion = criterion
        self.losses = losses
        self.num_queries = num_queries
        self.overlap_threshold = overlap_threshold
        self.object_mask_threshold = object_mask_threshold
        self.metadata = metadata
        if size_divisibility < 0:
            # use backbone size_divisibility if not set
            size_divisibility = self.backbone.size_divisibility
        self.size_divisibility = size_divisibility
        self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
        self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
        self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

        # additional args
        self.semantic_on = semantic_on
        self.instance_on = instance_on
        self.panoptic_on = panoptic_on

        # caption argument
        self.task_switch = task_switch
        self.phrase_prob = phrase_prob

        self.test_topk_per_image = test_topk_per_image
        self.train_class_names = None

        self.retrieval_emsemble = retrieval_emsemble
        # backbone itc loss
        if task_switch['retrieval'] and retrieval_emsemble:
            self.backbone_proj = nn.Parameter(torch.empty(backbone_dim, dim_proj))
            trunc_normal_(self.backbone_proj, std=.02)

        if not self.semantic_on:
            assert self.sem_seg_postprocess_before_inference

    @classmethod
    def from_config(cls, cfg):
        enc_cfg = cfg['MODEL']['ENCODER']
        dec_cfg = cfg['MODEL']['DECODER']

        task_switch = {'bbox': dec_cfg.get('DETECTION', False),
                       'mask': dec_cfg.get('MASK', True),
                       'caption': dec_cfg['CAPTION'].get('ENABLED', False),
                       'captioning': dec_cfg['CAPTIONING'].get('ENABLED', False),
                       'retrieval': dec_cfg['RETRIEVAL'].get('ENABLED', False),
                       'grounding': dec_cfg['GROUNDING'].get('ENABLED', False)}

        # build model
        extra = {'task_switch': task_switch}
        backbone = build_backbone(cfg)
        lang_encoder = build_language_encoder(cfg)        
        sem_seg_head = build_xdecoder_head(cfg, backbone.output_shape(), lang_encoder, extra)

        # Training Settings.
        loss_weights = {}
        matcher = None
        losses = {}
        weight_dict = {}        
        grd_weight = {}
        top_x_layers = {}
        criterion = None
        train_dataset_name = None
        phrase_prob = None
        # Loss parameters:
        deep_supervision = None
        no_object_weight = None

        return {
            "backbone": backbone,
            "sem_seg_head": sem_seg_head,
            "criterion": criterion,
            "losses": losses,
            "num_queries": dec_cfg['NUM_OBJECT_QUERIES'],
            "object_mask_threshold": dec_cfg['TEST']['OBJECT_MASK_THRESHOLD'],
            "overlap_threshold": dec_cfg['TEST']['OVERLAP_THRESHOLD'],
            "metadata": None,
            "size_divisibility": dec_cfg['SIZE_DIVISIBILITY'],
            "sem_seg_postprocess_before_inference": (
                dec_cfg['TEST']['SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE']
                or dec_cfg['TEST']['PANOPTIC_ON']
                or dec_cfg['TEST']['INSTANCE_ON']
            ),
            "pixel_mean": cfg['INPUT']['PIXEL_MEAN'],
            "pixel_std": cfg['INPUT']['PIXEL_STD'],
            "task_switch": task_switch,
            "phrase_prob": phrase_prob,
            # inference
            "semantic_on": dec_cfg['TEST']['SEMANTIC_ON'],
            "instance_on": dec_cfg['TEST']['INSTANCE_ON'],
            "panoptic_on": dec_cfg['TEST']['PANOPTIC_ON'],
            "test_topk_per_image": cfg['MODEL']['DECODER']['TEST']['DETECTIONS_PER_IMAGE'],
            "train_dataset_name": train_dataset_name,
            "retrieval_emsemble": dec_cfg['RETRIEVAL']['ENSEMBLE'],
            "backbone_dim": cfg['MODEL']['BACKBONE_DIM'],
            "dim_proj": cfg['MODEL']['DIM_PROJ'],
        }

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs, mode=None):
        if self.training:
            assert False, "Not support trianing mode."
        else:
            if mode == 'retrieval':
                return self.evaluate_retrieval(batched_inputs)
            elif mode == 'captioning':
                return self.evaluate_captioning(batched_inputs)
            elif mode == 'classification':
                return self.evaluate_classification(batched_inputs)
            elif mode in ['grounding_phrasecut', 'grounding_refcoco']:
                return self.evaluate_grounding(batched_inputs, mode)
            else:
                return self.evaluate(batched_inputs)
        
    def evaluate(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]

        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=queries_grounding)

        mask_cls_results = outputs["pred_logits"]
        mask_pred_results = outputs["pred_masks"]
        box_pred_results = outputs["pred_boxes"] if self.task_switch['bbox'] else [None for i in range(len(mask_pred_results))]
        caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]

        # upsample masks
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(images.tensor.shape[-2], images.tensor.shape[-1]),
            mode="bilinear",
            align_corners=False,
        )

        input_size = mask_pred_results.shape[-2:]
        keep_sem_bgd = self.metadata.keep_sem_bgd if hasattr(self.metadata, 'keep_sem_bgd') else False
        del outputs

        processed_results = []
        for mask_cls_result, mask_pred_result, box_pred_result, caption_pred_result, input_per_image, image_size in zip(
            mask_cls_results, mask_pred_results, box_pred_results, caption_pred_results, batched_inputs, images.image_sizes
        ):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            processed_results.append({})

            if self.sem_seg_postprocess_before_inference:
                mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
                    mask_pred_result, image_size, height, width
                )
                mask_cls_result = mask_cls_result.to(mask_pred_result)

            # semantic segmentation inference
            if self.semantic_on:
                r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result, keep_sem_bgd)
                if not self.sem_seg_postprocess_before_inference:
                    r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width)
                processed_results[-1]["sem_seg"] = r

            # panoptic segmentation inference
            if self.panoptic_on:
                panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result)
                processed_results[-1]["panoptic_seg"] = panoptic_r
            
            # instance segmentation inference
            if self.instance_on:
                if self.task_switch['bbox']:
                    box_pred_result = bbox_postprocess(box_pred_result, input_size, image_size, height, width)
                instance_r = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result, box_pred_result)
                processed_results[-1]["instances"] = instance_r
            if self.task_switch['caption']:
                processed_results[-1]["captions"] = caption_pred_result
                processed_results[-1]["masks"] = mask_pred_result

        return processed_results


    def evaluate_retrieval(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]
        
        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=queries_grounding)
        v_emb_it = outputs['pred_captions'][:,-1]

        # compute backbone score
        if self.task_switch['retrieval'] and self.retrieval_emsemble:
            _v_emb_it = features['res5']
            bs,nc,_,_ = _v_emb_it.shape
            _v_emb_it = _v_emb_it.reshape(bs,nc,-1)
            _v_emb_it = F.adaptive_avg_pool1d(_v_emb_it, 1).reshape(bs,nc) @ self.backbone_proj

        processed_results = []
        for idx, batch_data in enumerate(batched_inputs):
            caption_ids = []
            t_emb_its = []
            processed_results.append({})
            for caption in batch_data['captions']:
                lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(caption)
                t_emb_it = lang_results['class_emb']
                caption_ids.append(batch_data['image_id'])
                t_emb_its.append(t_emb_it)

            t_emb_it = torch.cat(t_emb_its, dim=0)

            image_embeds = [v_emb_it[idx].unsqueeze(0)]
            if self.task_switch['retrieval'] and self.retrieval_emsemble:
                image_embeds += [_v_emb_it[idx].unsqueeze(0)]
            caption_results = {
                    'image_embeds': image_embeds,
                    'text_embeds': t_emb_it,
                    'caption_ids': caption_ids,
                    'image_ids': batch_data['image_id'],
                }
            processed_results[-1]["caption"] = caption_results            
        return processed_results

    def evaluate_captioning(self, batched_inputs, extra={}):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]

        if not hasattr(self, 'start_token'):
            self.start_token = torch.tensor([[49406]*77], device=self.device)
        
        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)

        captioning_mask = None
        if 'captioning_mask' in batched_inputs[-1]:
            captioning_mask = torch.cat([x['captioning_mask'] for x in batched_inputs])

        extra.update({'start_token': self.start_token, 'captioning_mask': captioning_mask})
        outputs = self.sem_seg_head(features, target_queries=queries_grounding, task='captioning_infer', extra=extra)

        processed_results = []
        for idx, batch_data in enumerate(batched_inputs):
            processed_results.append({})
            processed_results[-1]["captioning_token"] = outputs['pred_captionings'][idx]
            processed_results[-1]["captioning_text"] = outputs['pred_texts'][idx].split('.')[0]
            processed_results[-1]["image_id"] = batched_inputs[idx]['image_id']
            
        return processed_results

    def evaluate_classification(self, batched_inputs):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]
        
        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=queries_grounding)

        processed_results = []
        for idx, batch_data in enumerate(batched_inputs):
            processed_results.append({})
            processed_results[-1]["pred_class"] = outputs['pred_logits'][idx,-1]
        return processed_results

    def evaluate_grounding_baseline(self, batched_inputs, mode):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)
        img_bs = images.tensor.shape[0]
        
        targets = targets_grounding = queries_grounding = None
        features = self.backbone(images.tensor)
        outputs = self.sem_seg_head(features, target_queries=queries_grounding)

        mask_pred_results = outputs["pred_masks"]
        caption_pred_results = outputs["pred_captions"] if self.task_switch['caption'] else [None for i in range(len(mask_pred_results))]

        # upsample masks
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(images.tensor.shape[-2], images.tensor.shape[-1]),
            mode="bilinear",
            align_corners=False,
        )

        processed_results = []
        for mask_pred_result, caption_pred_result, input_per_image, image_size in zip(
            mask_pred_results, caption_pred_results, batched_inputs, images.image_sizes
        ):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            processed_results.append({})

            mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
                mask_pred_result, image_size, height, width
            )[:-1]

            texts_all = input_per_image['groundings']['texts']
            grd_masks = []
            for texts in texts_all:
                if mode == 'grounding_refcoco':
                    self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=False, is_eval=True)
                elif mode == 'grounding_phrasecut':
                    self.sem_seg_head.predictor.lang_encoder.get_text_embeddings(texts, name='grounding', prompt=True, is_eval=False)
                t_emb = getattr(self.sem_seg_head.predictor.lang_encoder, "{}_text_embeddings".format('grounding')).t()
                v_emb = caption_pred_result[:-1]
                v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
                vt_sim = v_emb @ t_emb
                max_id = vt_sim.max(0)[1][0]
                grd_masks += [mask_pred_result[max_id]]
            processed_results[-1]['grounding_mask'] = torch.stack(grd_masks)

        return processed_results

    def evaluate_grounding(self, batched_inputs, mode):
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.size_divisibility)

        extra = {}
        # mask_pred_results = []
        # for idx, batch_per_image in enumerate(batched_inputs):
        #     grd_texts = batch_per_image['groundings']['texts']
        #     grd_masks = []
        #     for anno_text in grd_texts:
        #         gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings([anno_text[0]], name='grounding', token=False, norm=False)
        #         token_emb = gtext['token_emb']
        #         tokens = gtext['tokens']
            
        #         grd_emb = token_emb[0][tokens['attention_mask'].bool()[0]]
        #         extra['grounding_tokens'] = grd_emb[:,None]

        #         assert len(images.tensor) == 1, "grounding evaluation only support single batch size now"
        #         features = self.backbone(images.tensor)
        #         outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')
                
        #         pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
        #         v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
        #         t_emb = grd_emb[-1:]

        #         t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
        #         v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)            

        #         temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
        #         out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
                
        #         matched_id = out_prob.max(0)[1]
        #         grd_masks += [pred_gmasks[matched_id,:,:]]
        #     mask_pred_results += [torch.cat(grd_masks)]

        # comment for multi object inference.
        mask_pred_results = []
        for idx, batch_per_image in enumerate(batched_inputs):
            grd_texts = batch_per_image['groundings']['texts']
            grd_texts = [x[0] for x in grd_texts]

            gtext = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(grd_texts, name='grounding', token=False, norm=False)
            token_emb = gtext['token_emb']
            tokens = gtext['tokens']
            query_emb = token_emb[tokens['attention_mask'].bool()]
            extra['grounding_tokens'] = query_emb[:,None]

            features = self.backbone(images.tensor)
            outputs = self.sem_seg_head(features, extra=extra, task='grounding_eval')

            pred_gmasks = outputs['pred_masks'][idx,self.num_queries:2*self.num_queries-1]
            v_emb = outputs['pred_captions'][idx,self.num_queries:2*self.num_queries-1]
            t_emb = gtext['class_emb']

            t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
            v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)            

            temperature = self.sem_seg_head.predictor.lang_encoder.logit_scale
            out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
            
            matched_id = out_prob.max(0)[1]
            mask_pred_results += [pred_gmasks[matched_id,:,:]]

        for i in range(len(mask_pred_results)):
            # upsample masks
            mask_pred_results[i] = F.interpolate(
                mask_pred_results[i][None,],
                size=(images.tensor.shape[-2], images.tensor.shape[-1]),
                mode="bilinear",
                align_corners=False,
            )[0]

        processed_results = []
        for mask_pred_result, input_per_image, image_size in zip(
            mask_pred_results, batched_inputs, images.image_sizes
        ):
            height = input_per_image.get("height", image_size[0])
            width = input_per_image.get("width", image_size[1])
            processed_results.append({})

            mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)(
                mask_pred_result, image_size, height, width
            )
            processed_results[-1]['grounding_mask'] = mask_pred_result

            # compute bbox
            # bbox = BitMasks(mask_pred_result > 0).get_bounding_boxes()
            # bbox = BoxMode.convert(bbox.tensor, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
            # processed_results[-1]['grounding_box'] = bbox

        return processed_results

    def prepare_vlp_targets(self, batched_inputs, device):
        input_ids = []
        attention_mask = []
        for cnt, x in enumerate(batched_inputs):
            captions = x['captions']
            randid = random.randint(0, len(captions)-1)
            input_ids += x['tokens']['input_ids'][randid:randid+1]
            attention_mask += x['tokens']['attention_mask'][randid:randid+1]

        input_ids = torch.stack(input_ids)
        attention_mask = torch.stack(attention_mask)
        tokens = {"input_ids": input_ids, "attention_mask": attention_mask}
        lang_results = self.sem_seg_head.predictor.lang_encoder.get_text_token_embeddings(tokens, token=True)

        target_vlp = []
        for cnt, x in enumerate(batched_inputs):
            target_dict = {}
            target_dict["caption_tokens"] = lang_results['token_emb'][cnt:cnt+1]
            target_dict["caption_proj"] = lang_results['class_emb'][cnt:cnt+1]
            target_dict["caption_tokenids"] = lang_results['tokens']['input_ids'][cnt:cnt+1]
            target_dict["caption_mask"] = lang_results['tokens']['attention_mask'][cnt:cnt+1]            
            target_vlp.append(target_dict)
        return target_vlp

    def semantic_inference(self, mask_cls, mask_pred, keep_sem_bgd=False):
        if keep_sem_bgd:
            mask_cls = F.softmax(mask_cls, dim=-1)
        else:
            mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
        mask_pred = mask_pred.sigmoid()
        semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
        return semseg

    def panoptic_inference(self, mask_cls, mask_pred):
        scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
        mask_pred = mask_pred.sigmoid()

        keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
        cur_scores = scores[keep]
        cur_classes = labels[keep]
        cur_masks = mask_pred[keep]
        cur_mask_cls = mask_cls[keep]
        cur_mask_cls = cur_mask_cls[:, :-1]
        cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks

        h, w = cur_masks.shape[-2:]
        panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
        segments_info = []

        current_segment_id = 0

        if cur_masks.shape[0] == 0:
            # We didn't detect any mask :(
            return panoptic_seg, segments_info
        else:
            # take argmax
            cur_mask_ids = cur_prob_masks.argmax(0)
            stuff_memory_list = {}
            thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
            for k in range(cur_classes.shape[0]):
                pred_class = cur_classes[k].item()
                isthing = pred_class in thing_dataset_id_to_contiguous_id.values()
                mask_area = (cur_mask_ids == k).sum().item()
                original_area = (cur_masks[k] >= 0.5).sum().item()
                mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)

                if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
                    if mask_area / original_area < self.overlap_threshold:
                        continue

                    # merge stuff regions
                    if not isthing:
                        if int(pred_class) in stuff_memory_list.keys():
                            panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
                            continue
                        else:
                            stuff_memory_list[int(pred_class)] = current_segment_id + 1

                    current_segment_id += 1
                    panoptic_seg[mask] = current_segment_id

                    segments_info.append(
                        {
                            "id": current_segment_id,
                            "isthing": bool(isthing),
                            "category_id": int(pred_class),
                        }
                    )
            return panoptic_seg, segments_info

    def instance_inference(self, mask_cls, mask_pred, box_pred):
        # mask_pred is already processed to have the same shape as original input
        image_size = mask_pred.shape[-2:]

        # [Q, K]
        scores = F.softmax(mask_cls, dim=-1)[:, :-1]
        labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
        # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
        scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)

        labels_per_image = labels[topk_indices]
        topk_indices = (topk_indices // self.sem_seg_head.num_classes)
        # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
        mask_pred = mask_pred[topk_indices]
        if box_pred is not None:
            box_pred = box_pred[topk_indices]

        # if this is panoptic segmentation, we only keep the "thing" classes
        if self.panoptic_on:
            thing_dataset_id_to_contiguous_id = self.metadata.thing_dataset_id_to_contiguous_id if hasattr(self.metadata, 'thing_dataset_id_to_contiguous_id') else {}
            keep = torch.zeros_like(scores_per_image).bool()
            for i, lab in enumerate(labels_per_image):
                keep[i] = lab in thing_dataset_id_to_contiguous_id.values()

            scores_per_image = scores_per_image[keep]
            labels_per_image = labels_per_image[keep]
            mask_pred = mask_pred[keep]

            if box_pred is not None:
                box_pred = box_pred[keep]

        result = Instances(image_size)
        # mask (before sigmoid)
        result.pred_masks = (mask_pred > 0).float()
        # result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
        # Uncomment the following to get boxes from masks (this is slow)

        if box_pred is not None:
            result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
        else:
            result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))

        # calculate average mask prob
        mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
        result.scores = scores_per_image * mask_scores_per_image
        result.pred_classes = labels_per_image

        return result


@register_model
def get_segmentation_model(cfg, **kwargs):
    return X_Decoder_Model(cfg)