File size: 5,504 Bytes
e972e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import sys
import cv2
import torch
import numpy as np
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat
from imwatermark import WatermarkEncoder
from pathlib import Path

from .ddim import DDIMSampler
from .util import instantiate_from_config


torch.set_grad_enabled(False)


def put_watermark(img, wm_encoder=None):
    if wm_encoder is not None:
        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        img = wm_encoder.encode(img, 'dwtDct')
        img = Image.fromarray(img[:, :, ::-1])
    return img


def initialize_model(config, ckpt):
    config = OmegaConf.load(config)
    model = instantiate_from_config(config.model)

    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)

    device = torch.device(
        "cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)
    sampler = DDIMSampler(model)

    return sampler


def make_batch_sd(
        image,
        mask,
        txt,
        device,
        num_samples=1):
    image = np.array(image.convert("RGB"))
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

    mask = np.array(mask.convert("L"))
    mask = mask.astype(np.float32) / 255.0
    mask = mask[None, None]
    mask[mask < 0.5] = 0
    mask[mask >= 0.5] = 1
    mask = torch.from_numpy(mask)

    masked_image = image * (mask < 0.5)

    batch = {
        "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
        "txt": num_samples * [txt],
        "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
        "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
    }
    return batch

@torch.no_grad()
def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512):
    device = torch.device(
        "cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = sampler.model

    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
    wm = "SDV2"
    wm_encoder = WatermarkEncoder()
    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))

    prng = np.random.RandomState(seed)
    start_code = prng.randn(num_samples, 4, h // 8, w // 8)
    start_code = torch.from_numpy(start_code).to(
        device=device, dtype=torch.float32)

    with torch.no_grad(), \
            torch.autocast("cuda"):
        batch = make_batch_sd(image, mask, txt=prompt,
                              device=device, num_samples=num_samples)

        c = model.cond_stage_model.encode(batch["txt"])

        c_cat = list()
        for ck in model.concat_keys:
            cc = batch[ck].float()
            if ck != model.masked_image_key:
                bchw = [num_samples, 4, h // 8, w // 8]
                cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
            else:
                cc = model.get_first_stage_encoding(
                    model.encode_first_stage(cc))
            c_cat.append(cc)
        c_cat = torch.cat(c_cat, dim=1)

        # cond
        cond = {"c_concat": [c_cat], "c_crossattn": [c]}

        # uncond cond
        uc_cross = model.get_unconditional_conditioning(num_samples, "")
        uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}

        shape = [model.channels, h // 8, w // 8]
        samples_cfg, intermediates = sampler.sample(
            ddim_steps,
            num_samples,
            shape,
            cond,
            verbose=False,
            eta=1.0,
            unconditional_guidance_scale=scale,
            unconditional_conditioning=uc_full,
            x_T=start_code,
        )
        x_samples_ddim = model.decode_first_stage(samples_cfg)

        result = torch.clamp((x_samples_ddim + 1.0) / 2.0,
                             min=0.0, max=1.0)

        result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
    return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]

def pad_image(input_image):
    pad_w, pad_h = np.max(((2, 2), np.ceil(
        np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
    im_padded = Image.fromarray(
        np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
    return im_padded

# sampler = initialize_model(sys.argv[1], sys.argv[2])
@torch.no_grad()
def predict(model, input_image, prompt, ddim_steps, num_samples, scale, seed):
    """_summary_

    Args:
        input_image (_type_): dict
            - image: PIL.Image. Input image.
            - mask: PIL.Image. Mask image.
        prompt (_type_): string to be used as prompt. 
        ddim_steps (_type_): typical 45
        num_samples (_type_): typical 4
        scale (_type_): typical 10.0 Guidance Scale.
        seed (_type_): typical 1529160519
    
    """
    init_image = input_image["image"].convert("RGB")
    init_mask = input_image["mask"].convert("RGB")
    image = pad_image(init_image) # resize to integer multiple of 32
    mask = pad_image(init_mask) # resize to integer multiple of 32
    width, height = image.size
    print("Inpainting...", width, height)

    result = inpaint(
        sampler=model,
        image=image,
        mask=mask,
        prompt=prompt,
        seed=seed,
        scale=scale,
        ddim_steps=ddim_steps,
        num_samples=num_samples,
        h=height, w=width
    )

    return result