File size: 5,012 Bytes
a32f23a
 
 
 
 
bb4a0a3
 
 
83b3367
2bec834
08cdb29
0edfd6f
bb4a0a3
 
83b3367
 
08cdb29
 
 
 
 
 
83b3367
 
08cdb29
83b3367
 
 
135b063
83b3367
 
 
08cdb29
48c84a5
 
08cdb29
 
2bec834
08cdb29
 
83b3367
b82ba46
83b3367
 
 
bb4a0a3
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
83b3367
 
 
 
 
 
 
 
 
 
 
 
bb4a0a3
 
83b3367
bb4a0a3
 
 
 
83b3367
bb4a0a3
83b3367
 
 
 
 
bb4a0a3
83b3367
bb4a0a3
 
 
 
 
 
 
83b3367
 
 
bb4a0a3
 
 
83b3367
bb4a0a3
 
 
 
 
 
83b3367
bb4a0a3
 
 
 
 
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
83b3367
bb4a0a3
 
 
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
 
 
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
83b3367
bb4a0a3
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
83b3367
bb4a0a3
 
 
83b3367
bb4a0a3
83b3367
bb4a0a3
 
83b3367
 
 
 
bb4a0a3
 
83b3367
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# 1. spacesを最初にインポート
import spaces
# 2. その後で他のGPU関連のライブラリをインポート
import torch
import transformers
import gradio as gr
import numpy as np
import random
#from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline, TCDScheduler
from huggingface_hub import hf_hub_download
from peft import LoraConfig, get_peft_model

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216

base_model_id = "Laxhar/noobai-XL-1.0"
repo_name = "ByteDance/Hyper-SD"
# Take 2-steps lora as an example
ckpt_name = "Hyper-SDXL-8steps-lora.safetensors"

# Load model.
#pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_id, 
    torch_dtype=torch.float16, 
    use_safetensors=True,
    custom_pipeline="lpw_stable_diffusion_xl",
    add_watermarker=False
)
pipe.to('cuda')

#pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
#pipe.load_lora_weights(repo_name, ckpt_name)
pipe.load_lora_weights(repo_name, weight_name=ckpt_name)
pipe.fuse_lora()
# Ensure ddim scheduler timestep spacing set as trailing !!!
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# lower eta results in more detail

prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
negative_prompt = "(worst quality),(low quality),lowres,(bad anatomy),(deformed anatomy),(deformed fingers),(blurry),(extra finger),(extra arms), (extra legs),(monochrome:1.4),(grayscale:1.4),((watermark)),(overweight female:1.6),((pointy ears)),mascot,stuffed human, stuffed animal,chibi,english text, chinese text, korean text"

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres", 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Demo
        using [noobai XL 1.0](https://huggingface.co/Laxhar/noobai-XL-1.0)
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=832,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1216,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=20.0,
                    step=0.1,
                    value=7,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=28,
                    step=1,
                    value=28,
                )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()