File size: 5,012 Bytes
a32f23a bb4a0a3 83b3367 2bec834 08cdb29 0edfd6f bb4a0a3 83b3367 08cdb29 83b3367 08cdb29 83b3367 135b063 83b3367 08cdb29 48c84a5 08cdb29 2bec834 08cdb29 83b3367 b82ba46 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 bb4a0a3 83b3367 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# 1. spacesを最初にインポート
import spaces
# 2. その後で他のGPU関連のライブラリをインポート
import torch
import transformers
import gradio as gr
import numpy as np
import random
#from diffusers import DiffusionPipeline
from diffusers import StableDiffusionXLPipeline, TCDScheduler
from huggingface_hub import hf_hub_download
from peft import LoraConfig, get_peft_model
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1216
base_model_id = "Laxhar/noobai-XL-1.0"
repo_name = "ByteDance/Hyper-SD"
# Take 2-steps lora as an example
ckpt_name = "Hyper-SDXL-8steps-lora.safetensors"
# Load model.
#pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_id,
torch_dtype=torch.float16,
use_safetensors=True,
custom_pipeline="lpw_stable_diffusion_xl",
add_watermarker=False
)
pipe.to('cuda')
#pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to("cuda")
#pipe.load_lora_weights(repo_name, ckpt_name)
pipe.load_lora_weights(repo_name, weight_name=ckpt_name)
pipe.fuse_lora()
# Ensure ddim scheduler timestep spacing set as trailing !!!
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
# lower eta results in more detail
prompt = "1girl, solo, upper body, v, smile, looking at viewer, outdoors, night, masterpiece, best quality, very aesthetic, absurdres"
negative_prompt = "(worst quality),(low quality),lowres,(bad anatomy),(deformed anatomy),(deformed fingers),(blurry),(extra finger),(extra arms), (extra legs),(monochrome:1.4),(grayscale:1.4),((watermark)),(overweight female:1.6),((pointy ears)),mascot,stuffed human, stuffed animal,chibi,english text, chinese text, korean text"
@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt+", masterpiece, best quality, very aesthetic, absurdres",
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Demo
using [noobai XL 1.0](https://huggingface.co/Laxhar/noobai-XL-1.0)
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=832,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1216,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=28,
step=1,
value=28,
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
demo.queue().launch()
|