File size: 6,913 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8133633
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from dataclasses import dataclass, field

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

import craftsman
from .utils import (
    Mesh,
    IsosurfaceHelper,
    MarchingCubeCPUHelper,
    MarchingTetrahedraHelper,
)

from craftsman.utils.base import BaseModule
from craftsman.utils.ops import chunk_batch, scale_tensor
from craftsman.utils.typing import *

class BaseGeometry(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        pass

    cfg: Config

    @staticmethod
    def create_from(
        other: "BaseGeometry", cfg: Optional[Union[dict, DictConfig]] = None, **kwargs
    ) -> "BaseGeometry":
        raise TypeError(
            f"Cannot create {BaseGeometry.__name__} from {other.__class__.__name__}"
        )

    def export(self, *args, **kwargs) -> Dict[str, Any]:
        return {}


class BaseImplicitGeometry(BaseGeometry):
    @dataclass
    class Config(BaseGeometry.Config):
        radius: float = 1.0
        isosurface: bool = True
        isosurface_method: str = "mt"
        isosurface_resolution: int = 128
        isosurface_threshold: Union[float, str] = 0.0
        isosurface_chunk: int = 0
        isosurface_coarse_to_fine: bool = True
        isosurface_deformable_grid: bool = False
        isosurface_remove_outliers: bool = True
        isosurface_outlier_n_faces_threshold: Union[int, float] = 0.01

    cfg: Config

    def configure(self) -> None:
        self.bbox: Float[Tensor, "2 3"]
        self.register_buffer(
            "bbox",
            torch.as_tensor(
                [
                    [-self.cfg.radius, -self.cfg.radius, -self.cfg.radius],
                    [self.cfg.radius, self.cfg.radius, self.cfg.radius],
                ],
                dtype=torch.float32,
            ),
        )
        self.isosurface_helper: Optional[IsosurfaceHelper] = None
        self.unbounded: bool = False

    def _initilize_isosurface_helper(self):
        if self.cfg.isosurface and self.isosurface_helper is None:
            if self.cfg.isosurface_method == "mc-cpu":
                self.isosurface_helper = MarchingCubeCPUHelper(
                    self.cfg.isosurface_resolution
                ).to(self.device)
            elif self.cfg.isosurface_method == "mt":
                self.isosurface_helper = MarchingTetrahedraHelper(
                    self.cfg.isosurface_resolution,
                    f"load/tets/{self.cfg.isosurface_resolution}_tets.npz",
                ).to(self.device)
            else:
                raise AttributeError(
                    "Unknown isosurface method {self.cfg.isosurface_method}"
                )

    def forward(
        self, points: Float[Tensor, "*N Di"], output_normal: bool = False
    ) -> Dict[str, Float[Tensor, "..."]]:
        raise NotImplementedError

    def forward_field(
        self, points: Float[Tensor, "*N Di"]
    ) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]:
        # return the value of the implicit field, could be density / signed distance
        # also return a deformation field if the grid vertices can be optimized
        raise NotImplementedError

    def forward_level(
        self, field: Float[Tensor, "*N 1"], threshold: float
    ) -> Float[Tensor, "*N 1"]:
        # return the value of the implicit field, where the zero level set represents the surface
        raise NotImplementedError

    def _isosurface(self, bbox: Float[Tensor, "2 3"], fine_stage: bool = False) -> Mesh:
        def batch_func(x):
            # scale to bbox as the input vertices are in [0, 1]
            field, deformation = self.forward_field(
                scale_tensor(
                    x.to(bbox.device), self.isosurface_helper.points_range, bbox
                ),
            )
            field = field.to(
                x.device
            )  # move to the same device as the input (could be CPU)
            if deformation is not None:
                deformation = deformation.to(x.device)
            return field, deformation

        assert self.isosurface_helper is not None

        field, deformation = chunk_batch(
            batch_func,
            self.cfg.isosurface_chunk,
            self.isosurface_helper.grid_vertices,
        )

        threshold: float

        if isinstance(self.cfg.isosurface_threshold, float):
            threshold = self.cfg.isosurface_threshold
        elif self.cfg.isosurface_threshold == "auto":
            eps = 1.0e-5
            threshold = field[field > eps].mean().item()
            craftsman.info(
                f"Automatically determined isosurface threshold: {threshold}"
            )
        else:
            raise TypeError(
                f"Unknown isosurface_threshold {self.cfg.isosurface_threshold}"
            )

        level = self.forward_level(field, threshold)
        mesh: Mesh = self.isosurface_helper(level, deformation=deformation)
        mesh.v_pos = scale_tensor(
            mesh.v_pos, self.isosurface_helper.points_range, bbox
        )  # scale to bbox as the grid vertices are in [0, 1]
        mesh.add_extra("bbox", bbox)

        if self.cfg.isosurface_remove_outliers:
            # remove outliers components with small number of faces
            # only enabled when the mesh is not differentiable
            mesh = mesh.remove_outlier(self.cfg.isosurface_outlier_n_faces_threshold)

        return mesh

    def isosurface(self) -> Mesh:
        if not self.cfg.isosurface:
            raise NotImplementedError(
                "Isosurface is not enabled in the current configuration"
            )
        self._initilize_isosurface_helper()
        if self.cfg.isosurface_coarse_to_fine:
            craftsman.debug("First run isosurface to get a tight bounding box ...")
            with torch.no_grad():
                mesh_coarse = self._isosurface(self.bbox)
            vmin, vmax = mesh_coarse.v_pos.amin(dim=0), mesh_coarse.v_pos.amax(dim=0)
            vmin_ = (vmin - (vmax - vmin) * 0.1).max(self.bbox[0])
            vmax_ = (vmax + (vmax - vmin) * 0.1).min(self.bbox[1])
            craftsman.debug("Run isosurface again with the tight bounding box ...")
            mesh = self._isosurface(torch.stack([vmin_, vmax_], dim=0), fine_stage=True)
        else:
            mesh = self._isosurface(self.bbox)
        return mesh


class BaseExplicitGeometry(BaseGeometry):
    @dataclass
    class Config(BaseGeometry.Config):
        radius: float = 1.0

    cfg: Config

    def configure(self) -> None:
        self.bbox: Float[Tensor, "2 3"]
        self.register_buffer(
            "bbox",
            torch.as_tensor(
                [
                    [-self.cfg.radius, -self.cfg.radius, -self.cfg.radius],
                    [self.cfg.radius, self.cfg.radius, self.cfg.radius],
                ],
                dtype=torch.float32,
            ),
        )